C arotenoids and related polyenes, Part 4. ${ }^{1}$ Synthesis of carotenoid analogues containing a conjugated carbonyl group and their fluorescence properties

Yumiko Yamano, ${ }^{\text {a }} \mathbf{M}$ amoru \mathbf{M} imuro ${ }^{\text {b }}$ and M asayoshi Ito*, a
${ }^{\text {a }}$ K obe P harmaceutical U niversity, M otoyamakita-machi, H igashinada-ku, K obe 658, J apan
${ }^{\mathrm{b}}$ D epartment of Information Science, Faculty of Science, Yamaguchi University,
Yamaguchi 753, J apan

F luorescence properties of several synthetic carotenoid analogues have been investigated in order to assess the relationship between molecular structures and function as a photosynthetic antenna. The origin of fluorescence is determined by two factors; the length of the conjugated double bond system and the presence of a carbonyl group. For efficient energy transfer to chlorophyll a, eight conjugated double bonds and an associated carbonyl group are required, which ensures that fluorescence occurs from the S_{1} state.

Introduction

In photosynthesis of algae, three carotenoids, fucoxanthin 1, peridinin 2 and siphonaxanthin 3, function as efficient lightharvesting antennas in pigment systems; ${ }^{2,3}$ their energy-transfer efficiency to an acceptor molecule, chlorophyll (Chl) a, was estimated to be very high. These carotenoids show a stronger emission from the forbidden S_{1} state than that from the allowed S_{2} state and their S_{1} lifetimes were longer than those of the unsubstituted carotenoids. ${ }^{4,5}$ Their S_{1} fluorescence spectra exhibit a greater overlap with the absorption spectrum of Chl a and thus a higher transition probability from the S_{1} state takes place in the energy-transfer sequence. These are of the utmost importance for the antenna function in algal photosynthetic pigment systems. ${ }^{3}$

Previously, our group reported that the fluorescence spectra of carbonyl-containing carotenoids were characterized by dual emissive properties. ${ }^{4-7}$ The origin of fluorescence is determined by the presence of a carbonyl group; for example, neoxanthin 4,
in which a carbonyl group of fucoxanthin $\mathbf{1}$ was replaced with a normal double bond, showed its origin from the S_{2} state H owever, in the case of spheroidenone $\mathbf{5}$, even though the carbonyl group was contained in the conjugated system, its main emission originated from the S_{2} state (Fig. 1). This suggests that the origin of fluorescence is determined not only by the presence of a carbonyl group but also by the molecular structure of the carotenoids. Thus we investigated this point by using several synthetic carotenoid analogues.

Results and discussion

E ffect of β-ionone rings on the fluorescence properties

A characteristic molecular structure of antenna carotenoids is the presence of β-ionone rings and a carbonyl group in a chain of eight conjugated $C=C$ double bonds. F irst, in order to study the effect of β-ionone rings on the fluorescence properties, we synthesized four analogues $6,{ }^{7} 7,8$ and 9^{7} of fucoxanthin 1 .

Peridinin 2

Neoxanthin 4

Spheroidenone 5
Structure of carotenoids of interest

Fig. 1 A bsorption spectra (smooth curves; left side) and fluorescence spectra (noisy curves; right side) of fucoxanthin 1, neoxanthin 4, spheroidenone 5 and analogues 6-13, for solutions in CS_{2}

A nalogues $\mathbf{6}$ and $\mathbf{7}$ were derived from the oxo pentaenal 14, which was previously prepared ${ }^{1}$ for the first total synthesis of fucoxanthin 1 (Scheme 1). Wittig condensation of the phosphonium salt 15^{8} with the aldehyde 14 in the presence of sodium methoxide as base, followed by acetylation, afforded an isomeric mixture [50\% from 14; all-E (analogue 6):13Z ~1:1] of the condensed products, which was cleanly separated by preparative HPLC (PHPLC) in the dark. The stereochemistry of the newly formed 13,14 -double bonds of these isomers was determined from the coupling constants ($\mathrm{E}: 15 \mathrm{~Hz} ; \mathrm{Z}: 12 \mathrm{~Hz}$) between 13 - and $14-\mathrm{H}$ in the ${ }^{1} \mathrm{H}$ N M R spectra. The analogue 7 was also synthesized [64% from 15; all-E:11Z $\sim 1: 1$] using the Wittig salt 16, which was derived from the formyl ester 17^{9} in 3 steps (64\%) as shown in Scheme 1.
A nalogues 8 and 9 , not possessing a β-ionone ring on the left side of the polyene chain, were prepared by reaction of the Wittig salt 15 or $\mathbf{1 6}$ with the oxo pentaenal 24a. Condensed products (8 : 74%; 9 : 87%; as isomeric mixtures) were purified by PHPLC to give each pure analogue. The aldehyde 24a was derived from the formyl ester 17. Introduction of a methyl group into aldehyde 17 and subsequent protection of the resulting hydroxy group gave the tert-butyldimethylsilyl (TBS) ether 20 (80%). Reduction of the ester group in compound 20 with
lithium aluminium hydride (LAH) provided the alcohol 21 (83%), which was treated with lithium chloride and methanesulfonyl chloride (M sCl) followed by treatment with triphenylphosphine in chloroform under reflux to afford the Wittig salt 22 (73% from 21). Wittig condensation of the phosphonium salt $\mathbf{2 2}$ with the C_{10}-dialdehyde $\mathbf{2 3}$ gave a mixture of the condensed products, which was desilylated using tetrabutylammonium fluoride (TBAF), oxidized with MnO_{2}, and subsequently separated by PH PLC to provide the all-E-oxo pentaenal 24a (42% from 23) and its $8 Z$-isomer 24b (8% from 23). The steady-state fluorescence spectra of these analogues 6-9 in CS_{2} are shown in Fig. 1. The main emissions from these analogues were all observed at around 750 nm , indicating their origin from the S_{1} state as in the case of antenna carotenoids 1-3. These results show that β-ionone rings on both sides of a polyene chain do not affect its fluorescence properties.

Effect of the direction of a carbonyl group with respect to a

 polyene chain on the fluorescence propertiesThe carbonyl group in antenna carotenoids $\mathbf{1}^{10} 2$ and 3^{11} is arranged in s-trans form. The s-trans configuration of fucoxanthin 1 was confirmed ${ }^{10}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy, including nuclear Overhauser enhancement (NOE) experiments. In
siphonaxanthin 3, the oxygen atom of the carbonyl group is fixed in the same plane as that of conjugated double bonds by intramolecular hydrogen bonding with the alcohol. ${ }^{11}$ This is also the case in peridinin 2 , which has an ylidene butenolide ring structure. The carbonyl group in analogues $6-9$ was also confirmed to be s-trans from ${ }^{1} \mathrm{H}$ NM R spectroscopy including NOE experiments (cross-peaks between $1-\mathrm{H}_{2}$ or $1-\mathrm{H}_{3}$ and $4-\mathrm{H}$). On the other hand, the carbonyl group in spheroidenone 5

$6 R^{1}=A, R^{2}=B ; \quad 8 R^{1}=M e, R^{2}=B$ $7 R^{1}=A, R^{2}=M e ; 9 R^{1}=R^{2}=M e$

$B=$

10

11

12

13
Structure of synthetic carotenoid analogues
(emission from S_{2} state is dominant) is known ${ }^{12}$ to be in the s -cis form. Therefore, it is expected ${ }^{7}$ that coplanarity of a carbonyl group with a polyene chain in the ground state is correlated with the origin of fluorescence. Thus, in order to study the effect of a carbonyl group on the fluorescence properties, we synthesized analogues $\mathbf{1 0 - 1 2}$, whose configuration of the carbonyl group with respect to the eight conjugated double bonds is fixed in s -cis or s -trans form by the terminal ring structure.
The analogue 10, possessing an s-trans carbonyl group, was synthesized starting from 2-methylcyclohexane-1,3-dione 25 (Scheme 2). Treatment of dione 25 with 1 mol equiv. of N -phenyltrifluoromethanesulfonimide ($\mathrm{T}_{2} \mathrm{~N} \mathrm{Ph}$) in the presence of sodium hydride as a base gave the oxo enol triflate 26 (98%). Reduction of the carbonyl group of compound 26 with sodium borohydride followed by protection of the resulting hydroxy group gave the TBS ether 27 (68\%), which underwent a coupling reaction ${ }^{13}$ with methyl vinyl ketone in the presence of palladium catalyst to afford the dienone 28 (91\%). Peterson olefination of compound $\mathbf{2 8}$ with ethyl (trimethylsilyl)(TM S)acetate and lithium diisopropylamide (LDA) at $-78{ }^{\circ} \mathrm{C}$ afforded the trienoate $29(2 E: 2 Z=4: 3)(95 \%)$, which without separation was transformed into the trienal $30(2 E: 2 Z=3: 2)$ in 3 steps (63%) as shown in Scheme 2. Wittig condensation of the phosphonium salt 31^{14} with aldehyde 30 and subsequent acid hydrolysis gave a crude isomeric mixture of the oxo pentaenal 32, which without separation was treated with a palladium catalyst ${ }^{1,15}$ and then purified by PH PLC to give the all-E-oxo pentaenal 32a (76% from 30) and its $6 Z$-isomer 32b (13% from 30). Finally, compound 32a was condensed with the phosphonium salt 16 (Scheme 1) to give the analogue 10 (62%; all-E : 9^{\prime} Z ~ 1 :1).
The analogue 11 was derived from cyclohexane-1,2-dione 33 as shown in Scheme 2. Treatment of the dione 33 with methoxytrimethylsilane at $0^{\circ} \mathrm{C}$ in the presence of a catalytic amount of trifluoromethanesulfonic acid (TfOH) gave the dione monoketal 37 as the major initial product, which was converted into the diosphenol methyl ether $\mathbf{3 4}$ by keeping the reaction mixture at room temperature for several hours. ${ }^{16}$ E mmons-H orner reaction of enone $\mathbf{3 4}$ with the phosphonate $\mathbf{3 5}$ provided an isomeric

Scheme 1 Reagents: i, 15, $\mathbf{1 6}$ or 23, NaOM e; ii, $\mathrm{Ac}_{2} \mathrm{O}$, Py; iii, EtPPh ${ }_{3} \mathrm{Br},{ }^{n} \mathrm{BuLi}$; iv, LAH; v, PPh ${ }_{3} \cdot \mathrm{HBr}$; vi, M eM gBr; vii, TBSOTf, γ-collidine; viii, LiCl, M sCl, γ-collidine; ix, PPh_{3}; x, TBAF ; xi, M nO ${ }_{2}$

Scheme 2 Reagents: i, $\mathrm{NaH}, \mathrm{Tf}_{2} \mathrm{NPh}$; ii, NaBH_{4}; iii, $\mathrm{TBSCl}^{2} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}$; iv, methyl vinyl ketone, cat. $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{Et}_{3} \mathrm{~N} ; \mathrm{v}_{1} \mathrm{TM} \mathrm{SCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$,
 $\mathrm{LiCl}, \mathrm{M} \mathrm{sCl}, \gamma$-collidine; xiv, PPh_{3}; xv, cyclopentanone, LDA ; xvi, A $\mathrm{c}_{2} \mathrm{O}$, D M A P; xvii, D BU
mixture of ylidene-esters 36a (31\%) and 36b (36\%), while the same reaction of ketal 37 afforded the E-ylidene-ester 38 (95\%) as a single isomer. Therefore, the ester 38 was used for further reaction. Stereochemistry of those isomers was confirmed by
${ }^{1} \mathrm{H}$ NMR spectroscopy including 2D NOE and exchange spectroscopy (NOESY) experiments: in E-isomers 36a and 38, cross-peaks between $2-\mathrm{H}$ and $2^{\prime}-\mathrm{OM}$ e were observed, whereas cross-peaks between $2-\mathrm{H}$ and $6^{\prime}-\mathrm{H}_{2}$ appeared in the Z -isomer

36b. Similar treatment of the ester 38 as in the case of the preparation of the Wittig salt 22 from $\mathbf{2 0}$ (Scheme 1) gave a mixture of Wittig salts 41 and 42 , which without purification was allowed to react with the C_{10}-dialdehyde 23 . The resulting condensed products were deprotected by acid hydrolysis and subsequently treated with palladium catalyst and then purified by PHPLC to give the all-E-oxo pentaenal 43 (81% from 23). Finally, aldehyde 43 was condensed with the phosphonium salt 16 to furnish the analogue 11 (79\%; all$\mathrm{E}: 10^{\prime} \mathrm{Z} \sim 1: 1$).

The analogue 12 was synthesized through reaction of cyclopentanone with the dienal 46, which was prepared from the enal 44^{14} by Emmons-H orner reaction with the phosphonate 35 (98\%) and subsequent reduction with LAH and oxidation with $\mathrm{M} \mathrm{NO}_{2}$ (50% from 45). Treatment of the dienal 46 with the lithium enolate of cyclopentanone gave the aldol, which was acetylated, treated with 1,8-diazabicyclo[5.4.0] undec-7-ene ($D B U$), and then hydrolysed to provide the all-Eoxo trienal 47 (64% from 46). The newly formed ylidene double bond in compound 47 was determined to be E from ${ }^{1} \mathrm{H} N \mathrm{NR}$ spectroscopy including N OE experiments (cross-peaks between $5^{\prime}-\mathrm{H}_{2}$ and $\left.5-\mathrm{H}\right)$. The oxo trienal 47 was transformed into the analogue $\mathbf{1 2}$ in the same manner as in the case of synthesis of the analogue 10, as shown in Scheme 2.

The steady-state fluorescence spectra of analogues 10-12 (Fig. 1) were similar to those of antenna carotenoids 1-3 and analogues 6-9; the main emission originated from the S_{1} state ($\sim 750 \mathrm{~nm}$). This shows that coplanarity of a carbonyl group with a polyene chain is not significant for the S_{1} emission.

E ffect of length of conjugated double-bond system on the fluorescence properties

The number of conjugated double bonds (n) in antenna carotenoids 1-3 and synthetic analogues 6-12 is nine $[C=C$ (or $\mathrm{C}=\mathrm{C}=\mathrm{C}) \times 8+\mathrm{C}=0 \times 1] \dagger$ and show, preferentially, S_{1} emission whereas the emission from the S_{2} state is dominant in spheroidenone 5 ($\mathrm{n}=11 ; \mathrm{C}=\mathrm{C} \times 10+\mathrm{C}=0 \times 1$). Therefore, in order to study the effect of the length of the conjugated double bond system on the fluorescence properties, we synthesized the analogue 13 as shown in Scheme 2 and measured its fluorescence spectrum (Fig. 1). The main emission from analogue 13 was observed at -600 nm , indicating S_{2} emission. This clearly shows that the origin of fluorescence is affected by the length of the conjugated double-bond system.

Previously, our group reported that the presence of a carbonyl group had a large effect on the origin of fluorescence of polyenes. ${ }^{4-7}$ For example, in the case of fucoxanthin 1 replacement of a carbonyl group with a normal double bond (neoxanthin 4) changed the origin of fluorescence from the S_{1} state to the S_{2} state (F ig. 1), even though the number n was the same in the two carotenoids. ${ }^{5}$ F rom the above results, it appears that the origin of fluorescence is determined not only by the presence of a carbonyl group but also by the length of the conjugated double-bond system. H owever, neither the substituent group (for example, β-ionone ring) nor the direction of a carbonyl group with respect to a polyene chain is so significant for the S_{1} emission.
As pointed out by one of us, ${ }^{17}$ a main determinant for the origin of fluorescence is assigned to the energy gap between the S_{2} and S_{1} states ($\Delta \mathrm{E}_{21}$). On the other hand, the direction of a carbonyl group with respect to a polyene chain is known to bea major determinant in some aspects in the excited S_{2} state; ${ }^{18}$ this might be additional to the relaxation processes from the S_{2} state.

In summary, it is expected that a common molecular structure, viz. eight conjugated double bonds, with one carbony

[^0] the carbonyl group
group associated with the conjugated double-bond system, might be necessary for these carotenoids to function as efficient light-harvesting antennas in pigment systems.

Experimental

UV-VIS spectra were recorded on a JA SCO U best-55 instrument. IR spectra were measured on a Shimadzu IR-27G spectrometer, a Shimadzu FT-IR 4000 spectrometer or a Perkin-EImer FT-IR spectrometer, model Paragon 1000, for chloroform solutions unless otherwise stated. ${ }^{1} \mathrm{H}$ N M R spectra at 200, 300 or 500 M Hz were determined on a Varian X L-200, a Varian Gemini-200, a Varian Gemini-300 or a Varian VXR -500 superconducting Fourier-transform (FT)-NM R spectrometer, respectively, for deuteriochloroform solutions (tetramethylsilane as internal reference). ${ }^{13} \mathrm{C}$ N M R spectrum at 75 M Hz was measured on a Varian Gemini-300 superconducting FT-N M R spectrometer for samples in deuteriochloroform solution with tetramethylsilane as internal standard. J-Values are given in Hz . M ass spectra were taken on a Hitachi M-80 or a Hitachi M -4100 spectrometer.
A bsorption and fluorescence spectra shown in Fig. 1 were measured with a H itachi 330 spectrophotometer and a H itachi 850 spectrofluorometer, respectively, at $20^{\circ} \mathrm{C}$ for solutions in carbon disulfide. For the fluorescence spectra, the maximum absorbance of sample solutions was kept <0.3. M easurements were repeated several times to increase the signal-to-noise ratio. The excitation wavelength was between 410 and 460 nm depending on the sample. The bandwidths for fluorescence analysis were 5 nm for excitation and 3 nm for emission. D ata were transferred to a microcomputer for processing and to correct the spectral sensitivity of the fluorometer numerically.
Short-column chromatography (SCC) was performed on silica gel (M erck Art. 7739) under reduced pressure, and open column chromatography (CC) on silica gel (M erck Art. 7734). Preparative TLC (PLC) was performed on silica gel plates (M erck silica gel $60 \mathrm{~F}_{254}$ precoated plates, 0.5 mm thickness). A nalytical and preparative H PLC was carried out on Shimadzu LC-3A, 5A, 6A and Waters M odel 510 instruments with a UV-VIS detector.
Standard work-up means that the organic layers were finally washed with brine, dried over anhydrous sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo below $30^{\circ} \mathrm{C}$, using a rotary evaporator. All operations were carried out under nitrogen or argon. Ether refers to diethyl ether and hexane to n-hexane

Preparation of the analogue 6

A solution of NaOM e $\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in $\mathrm{MeOH} ; 1.54 \mathrm{~cm}^{3}, 1.54$ mmol) was added to an ice-cooled solution of the Wittig salt $15^{8}(690 \mathrm{mg}, 1.28 \mathrm{mmol})$ and the aldehyde $14^{1}(98 \mathrm{mg}, 0.26$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$. A fter being stirred at $0^{\circ} \mathrm{C}$ for 1.5 h , the reaction mixture was diluted with ether. The organic layer was followed by standard work-up to give a residue, which was purified by SCC (acetone-hexane, $2: 8$) to afford an isomeric mixture of condensed products. Without separation, this was dissolved in a mixture of pyridine (Py) ($6 \mathrm{~cm}^{3}$) and acetic anhydride ($2 \mathrm{~cm}^{3}$). The mixture was stirred at room temp. for 16 h , poured into ice-water and extracted with ether. The extracts were washed successively with aq. $3 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue, which was purified by SCC (ether-hexane, 1:3) to provide an isomeric mixture [$78 \mathrm{mg}, 50 \%$ from 14; all-E (analogue 6): $13 Z \sim 1: 1]$. PHPLC separation [LiChrosorb Si $60(5 \mu \mathrm{~m})$ $1.0 \times 30 \mathrm{~cm}$; tetrahydrofuran (THF)-hexane, 5:95] of the mixture in the dark gave the analogue 6 and its $13 Z$-isomer as red solids. A nalogue 6: $\lambda_{\text {max }}(E t O H) / n m 267,449$ and 464sh; $\lambda_{\text {max }}($ hexane $) / \mathrm{nm} 264,424,446$ and $474 ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1730$ (OA c), 1659 (conj. CO) and $1607\left(\mathrm{C}=\mathrm{C}\right.$); $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 0.82$ and 0.91 (each $3 \mathrm{H}, \mathrm{s}, 6^{\prime \prime}-$ gem-M e), $0.93\left(3 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{M} \mathrm{e}{ }^{\mathrm{eq}}\right)$, $1.03(3 \mathrm{H}$,
$\left.\mathrm{s}, 6^{\prime}-\mathrm{M} \mathrm{e} \mathrm{e}^{\mathrm{ax}}\right), 1.48\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{M} \mathrm{e}\right), 1.59\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.5,2^{\prime \prime}-\mathrm{M} \mathrm{e}\right), 1.65$ ($\left.1 \mathrm{H}, \mathrm{t}, \mathrm{J} 12,5^{\prime}-\mathrm{H}^{\mathrm{ax}}\right), 1.74\left(1 \mathrm{H}\right.$, ddd, J $12,3.5$ and $2,5^{\prime}-\mathrm{H}^{\text {eq }}$), 1.92 ($3 \mathrm{H}, \mathrm{s}, 16-\mathrm{Me}$), 1.97 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}$), 1.99 ($3 \mathrm{H}, \mathrm{s}, 12-\mathrm{Me}$), 2.00 ($3 \mathrm{H}, \mathrm{s}, 7-\mathrm{M} \mathrm{e}$), 2.05 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OA}$), 2.19 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10, \mathrm{l}^{\prime \prime}-\mathrm{H}$), $2.19\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, J 16 and $10,3^{\prime}-\mathrm{H}^{\text {ax }}$), $2.39(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, \mathrm{J} 16$ and $6,3^{\prime}-\mathrm{H}^{\mathrm{eq}}$), 3.44 and 3.48 (each $\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18,1-\mathrm{H}_{2}\right), 5.07(1 \mathrm{H}, \mathrm{m}$, $\left.4^{\prime}-\mathrm{H}\right), 5.42\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\left.3^{\prime \prime}-\mathrm{H}\right), 5.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and $10,18-\mathrm{H}$), $6.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,17-\mathrm{H}), 6.13(1 \mathrm{H}, \mathrm{brd}, \mathrm{J} 11,15-\mathrm{H}), 6.26(1 \mathrm{H}$, br d, J $11.5,11-\mathrm{H}$), $6.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,13-\mathrm{H}), 6.40(1 \mathrm{H}, \mathrm{br}$ d, J 12, 8-H), $6.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and 11, 5-H), $6.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and $12,9-\mathrm{H}), 6.67(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and $11,14-\mathrm{H}), 6.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $15,6-\mathrm{H}), 6.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and $11.5,10-\mathrm{H})$ and $7.24(1 \mathrm{H}, \mathrm{brd}$, J 11, 4-H) (Found: $\mathrm{M}^{+}, 610.440$. Calc. for $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{O}_{3}: ~ \mathrm{M}$, 610.438).

13Z-I somer: $\lambda_{\max }($ EtOH $) / \mathrm{nm} 269,333$ and 446; $\lambda_{\max }$ (hexane)/ $\mathrm{nm} 266,316,425,444$ and $472 ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1730(\mathrm{OAc})$, 1665 and 1659 (split) (conj. CO) and $1609(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz})$ 0.83 and 0.91 (each $3 \mathrm{H}, \mathrm{s}, 6^{\prime \prime}$-gem-M e), 0.93 ($3 \mathrm{H}, \mathrm{s}, \mathrm{b}^{\prime}-\mathrm{M} \mathrm{e}^{\mathrm{eq}}$), 1.03 ($3 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{M} \mathrm{e}^{\mathrm{ax}}$), $1.48\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{M} \mathrm{e}\right.$), 1.59 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.5$, $\left.2^{\prime \prime}-\mathrm{M} \mathrm{e}\right), 1.65\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 12,5^{\prime}-\mathrm{H}^{\mathrm{ax}}\right), 1.74(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 12,3.5$ and $2,5^{\prime}-\mathrm{H}^{\text {eq }}$), $1.89(3 \mathrm{H}, \mathrm{s}, 16-\mathrm{Me}$), $1.97(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}$), $2.00(3 \mathrm{H}, \mathrm{s}$, 7-M e), 2.05 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OA}$), 2.13 ($3 \mathrm{H}, \mathrm{s}, 12-\mathrm{M} \mathrm{e}$), 2.19 (1 H , br dd, J 16 and $10,3^{\prime}-\mathrm{H}^{\mathrm{ax}}$), $2.19\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10,1^{\prime \prime}-\mathrm{H}\right), 2.39(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, \mathrm{J}$ 16 and $6,3^{\prime}-\mathrm{H}^{\text {eq }}$), 3.44 and 3.48 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18,1-\mathrm{H}_{2}$), 5.07 ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$), $5.42\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $3^{\prime \prime}-\mathrm{H}$), 5.58 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and 10, 18-H), 5.97 (1 H, d, J 12, 13-H), 6.14 (1 H, d, J 15, 17-H), 6.32 ($1 \mathrm{H}, \mathrm{br}$ d, J $11,11-\mathrm{H}$), $6.34(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 12,14-\mathrm{H}), 6.41(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, J $11,8-\mathrm{H}), 6.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and 11, 5-H), $6.63(1 \mathrm{H}, \mathrm{br}$ d, J $12,15-\mathrm{H}$), $6.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5$ and 11, $9-\mathrm{H}), 6.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15$, $6-\mathrm{H}), 6.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5$ and $11,10-\mathrm{H})$ and $7.24(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}$ 11, 4-H) (Found: ${ }^{+}+610.439$).

M ethyl ($\mathbf{2 E}, \mathbf{4 E} / \mathbf{Z}$)-3-methylhex a-2,4-dienoate 18

A solution of butyllithium ($1.68 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane; $18.5 \mathrm{~cm}^{3}$, 31 mmol) was added to a stirred suspension of ethyltriphenylphosphonium bromide ($11.50 \mathrm{~g}, 31 \mathrm{mmol}$) in dry THF $\left(50 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for a further 40 min , after which a solution of the aldehyde $17^{9}(3.84 \mathrm{~g}, 30 \mathrm{mmol})$ in dry THF $\left(20 \mathrm{~cm}^{3}\right)$ was added, and stirring was continued at room temp. for 15 min . A fter being quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with ether followed by standard work-up to give a residue, which was purified by CC (ether-hexane, $2: 8$) to afford an isomeric mixture of the ester 18 ($3.16 \mathrm{~g}, 75 \% ; 4 \mathrm{E}: 4 \mathrm{Z}=2: 3$) as an oil, $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 260$; $v_{\text {max }} / \mathrm{cm}^{-1} 1712$ (conj. $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$) and 1640 and 1612 ($\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 1.83$ (3 H , d-like, J 7, 5-M e), 2.27 (3 H, s-like, 3 -M e), $3.70(6 / 5 \mathrm{H})$ and $3.71(9 / 5 \mathrm{H})$ (each $\left.\mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right), 5.69(2 / 5$ H) and $5.73(3 / 5 \mathrm{H})$ (each br s, 2-H), $5.72(3 / 5 \mathrm{H}, \mathrm{dq}, \mathrm{J} 12$ and 7) and 6.12-6.23 $(2 / 5 \mathrm{H}, \mathrm{m})$ (together $5-\mathrm{H})$ and $5.91(3 / 5 \mathrm{H}, \mathrm{brd}, \mathrm{J}$ 12) and $6.11(2 / 5 \mathrm{H}, \mathrm{d}, \mathrm{J} 15)$ (together $4-\mathrm{H})$ (Found: M^{+} $140.085 . \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $\mathrm{M}, 140.084$).

($2 \mathrm{E}, \mathbf{4 E} / \mathbf{Z}$)-3-M ethylhexa-2,4-dien-1-ol 19

A solution of the ester $\mathbf{1 8}(4.00 \mathrm{~g}, 28.6 \mathrm{mmol})$ in dry ether (30 cm^{3}) was added dropwise to a stirred suspension of LAH (0.81 $\mathrm{g}, 21.3 \mathrm{mmol}$) in dry ether ($100 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ and the mixture was stirred for a further 15 min . The excess of LAH was decomposed by dropwise addition of water. The mixture was extracted with ether followed by standard work-up to provide a residue, which was purified by SCC (ether-hexane, $2: 8$) to afford an isomeric mixture of the alcohol 19 ($2.94 \mathrm{~g}, 92 \%$; $4 \mathrm{E}: 4 \mathrm{Z}=2: 3)$ as an oil, $v_{\text {max }} / \mathrm{cm}^{-1} 3630$ and $3460(\mathrm{OH}) ; \delta_{\mathrm{H}}(300$ $\mathrm{M} \mathrm{Hz}) 1.68(1 \mathrm{H}$, br s, OH), $1.77(9 / 5 \mathrm{H})$ and $1.82(6 / 5 \mathrm{H})$ (each s, 3-M e), 1.81 ($9 / 5 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.2$) and $1.81(6 / 5 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7)$ (together 5-M e), $4.25\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5,1-\mathrm{H}_{2}\right), 5.51(3 / 5 \mathrm{H}, \mathrm{dq}, \mathrm{J} 12$ and 7.2) and $5.72(2 / 5 \mathrm{H}, \mathrm{dq}, \mathrm{J} 15.5$ and 6.7$)$ (together $5-\mathrm{H})$, 5.52-5.58(1 H, m, 2-H), $5.83(3 / 5 \mathrm{H}, \mathrm{brd}, \mathrm{J} 12)$ and $6.09(2 / 5 \mathrm{H}$, dd-like, J 15.5 and 1) (together 4-H) (Found: M^{+}, 112.090. $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}$ requires $\mathrm{M}, 112.089$).

Preparation of the phosphonium salt 16

A solution of the alcohol $19(2.94 \mathrm{~g}, 26.3 \mathrm{mmol})$ and triphenylphosphine hydrobromide ($9.01 \mathrm{~g}, 26.3 \mathrm{mmol}$) in methanol (100 cm^{3}) was stirred at room temp. for 48 h . Evaporation of the methanol gave a residue, which was washed with ether to provide crude phosphonium salt 16 ($10.69 \mathrm{~g}, 93 \%$) as a foam, $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 4,3-\mathrm{M} \mathrm{e}), 1.71(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{M} \mathrm{e}), 4.71$ $\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.5\right.$ and $\left.8,1-\mathrm{H}_{2}\right), 5.21(1 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}), 5.75(1 \mathrm{H}, \mathrm{m}$, 5-H), $5.94(1 \mathrm{H}, \mathrm{brd}, \mathrm{J} 15,4-\mathrm{H})$ and $7.60-7.90(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Preparation of the analogue 7

In the same manner as described for the preparation of the analogue 6 , the Wittig reaction between the phosphonium salt 16 ($192 \mathrm{mg}, 0.44 \mathrm{mmol}$) and the aldehyde 14 ($56 \mathrm{mg}, 0.15 \mathrm{mmol}$) followed by acetylation gave a residue, which was purified by SCC (ether-hexane, 1:3) to afford an isomeric mixture [47 mg , 64\% from 14; all-E (analogue 7) : $13 Z \sim 1: 1$]. PH PLC separation [LiChrosorb Si $60(5 \mu \mathrm{~m}) 1.0 \times 30 \mathrm{~cm}$; THF-hexane, 4:96] of the mixture in the dark provided the analogue 7 and its $13 Z$ isomer as red solids.
A nalogue 7: $\lambda_{\text {max }}(E t O H) / n m 265,447$ and 462sh; $\lambda_{\text {max }}$ (hexane)/ $\mathrm{nm} 262,420,443$ and $471 ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1730(\mathrm{OAC}), 1659$ (conj. CO) and $1607\left(\mathrm{C}=\mathrm{C}\right.$); $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 0.93\left(3 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{M} \mathrm{eq} \mathrm{e}^{\mathrm{eq}}\right.$), $1.03\left(3 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{M} \mathrm{e}^{\mathrm{ax}}\right), 1.48\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{M} \mathrm{e}\right), 1.65\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 12,5^{\prime}-\right.$ $H^{\text {ax }}$), $1.74\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 12,3.5\right.$ and $\left.2,5^{\prime}-\mathrm{H}^{\text {eq }}\right), 1.83(3 \mathrm{H}, \mathrm{brd}, \mathrm{J} 7$, $18-\mathrm{M} \mathrm{e}$), 1.91 ($3 \mathrm{H}, \mathrm{s}, 16-\mathrm{M} \mathrm{e}$), 1.97 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{M} \mathrm{e}$), $1.99(3 \mathrm{H}, \mathrm{s}$, $12-\mathrm{M} \mathrm{e}$), 2.00 ($3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}$), $2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{OA} \mathrm{c}), 2.18(1 \mathrm{H}, \mathrm{br} \mathrm{dd}$, $J 16$ and $\left.10,3^{\prime}-\mathrm{H}^{\text {ax }}\right), 2.39\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, J 16 and $\left.6,3^{\prime}-\mathrm{H}^{\text {eq }}\right)$, 3.44 and 3.48 (each $\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18,1-\mathrm{H}_{2}\right), 5.07\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 5.77(1$ H, dq, J 15.5 and 7, 18-H), 6.09 ($1 \mathrm{H}, \mathrm{br}$ d, J 11, 15-H), 6.16 (1 H, dd-like, J 15.5 and 1, 17-H), 6.26 (1 H, br d, J $12,11-\mathrm{H}$), 6.34 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,13-\mathrm{H}$), $6.40(1 \mathrm{H}, \mathrm{br}$ d, J $11,8-\mathrm{H}$), $6.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 15 and $11,5-\mathrm{H}), 6.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14$ and $11,9-\mathrm{H}), 6.66(1 \mathrm{H}, \mathrm{dd}$, J 15 and 11, 14-H), 6.68 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,6-\mathrm{H}$), 6.74 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14$ and $12,10-\mathrm{H}$) and $7.24(1 \mathrm{H}$, dd-like, J 11 and $1,4-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 502.343 . \mathrm{C}_{34} \mathrm{H}_{46} \mathrm{O}_{3}$ requires $\mathrm{M}, 502.344$).

13Z-I somer: $\lambda_{\text {max }}\left(\right.$ EtOH)/nm 267, 330 and 443; $\lambda_{\text {max }}$ (hexane)/ $\mathrm{nm} 264,314,327,423,441$ and $469 ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1730$ (OA C), 1659 (conj. CO) and 1607 ($\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 0.93$ (3 H, s, $6^{\prime}-M$ eqa $^{\text {eq }}$, 1.03 ($3 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{M} \mathrm{e}^{\mathrm{ax}}$), 1.48 ($3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{M} \mathrm{e}$), 1.65 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 12,5^{\prime}-\mathrm{H}^{\mathrm{ax}}$), $1.74\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 12,3.5\right.$ and $2,5^{\prime}-\mathrm{H}^{\mathrm{eq}}$), 1.83 (3 H, br d, J 7, 18-M e), 1.89 (3 H , s, 16-M e), 1.97 ($3 \mathrm{H}, \mathrm{s}$, $3-\mathrm{Me}), 2.00(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}), 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{OAC}), 2.11(3 \mathrm{H}$, s, $12-\mathrm{M} \mathrm{e}), 2.19\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, J 16 and $\left.9.5,3^{\prime}-\mathrm{H}^{\mathrm{ax}}\right), 2.39(1 \mathrm{H}, \mathrm{br} \mathrm{dd}$, J 16 and $6,3^{\prime}-\mathrm{H}^{\text {eq }}$), 3.44 and 3.48 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18,1-\mathrm{H}_{2}$), 5.07 ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$), $5.80(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 15.5$ and $7,18-\mathrm{H}$), $5.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $11.5,13-\mathrm{H}$), 6.19 (1 H , dd-like, J 15.5 and $1.5,17-\mathrm{H}$), 6.31 (1 H , br d, J 11.5, 11-H), 6.33 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 11.5,14-\mathrm{H}$), 6.40 ($1 \mathrm{H}, \mathrm{brd}$, J $11,8-\mathrm{H}), 6.58(1 \mathrm{H}, \mathrm{br}$ d, J $11.5,15-\mathrm{H}), 6.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and $11,5-H), 6.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5$ and 11, $9-\mathrm{H}), 6.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15$, $6-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5$ and $11.5,10-\mathrm{H})$ and $7.24(1 \mathrm{H}, \mathrm{br}$ d, J 11, 4-H) (F ound: M ${ }^{+}, 502.343$).

M ethyl (E)-4-(tert-butyldimethylsiloxy)-3-methylpent-2-enoate

 20A solution of methylmagnesium bromide $\left(0.92 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in THF; $94.5 \mathrm{~cm}^{3}, 86.9 \mathrm{mmol}$) was added dropwise to a stirred solution of the formyl ester $17^{9}(10.60 \mathrm{~g}, 82.8 \mathrm{mmol})$ in dry THF $\left(50 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for a further 30 min . A fter the reaction had been quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the organics were extracted with ether followed by standard work-up to give a residue, which was purified by SCC (ether-hexane, $2: 8$) to afford the corresponding alcohol (11.63 $\mathrm{g}, 98 \%$ from 17) as an oil, $v_{\text {max }} / \mathrm{cm}^{-1} 3608$ and 3482 (OH), 1715 (conj. $\mathrm{CO}_{2} \mathrm{Me}$) and $1655(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.32(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.6.5,5-\mathrm{H}_{3}\right), 2.12\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}\right.$ 1, 3-M e), $3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right.$), 4.27 (1 $\mathrm{H}, \mathrm{qd}, \mathrm{J} 6.5$ and $1,4-\mathrm{H}$) and $5.98(1 \mathrm{H}$, quint, J $1,2-\mathrm{H}$).

Subsequently, tert-butyldimethylsilyl trifluoromethanesulfonate (TBSOTf) ($\left.20.4 \mathrm{~cm}^{3}, 88.8 \mathrm{mmol}\right)$ was added to a stirred solution of this alcohol ($11.63 \mathrm{~g}, 80.8 \mathrm{mmol}$) and $2,4,6-$
trimethylpyridine (γ-collidine) ($16.0 \mathrm{~cm}^{3}, 121 \mathrm{mmol}$) in dry ether $\left(50 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. A fter being stirred at $0^{\circ} \mathrm{C}$ for 1.5 h , the reaction mixture was poured into ice-water and extracted with ether. The organic layer was washed successively with aq. 3\% HCl , saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts provided a residue, which was purified by CC (ether-hexane, 2:8) to yield the TBS ether $20(17.08 \mathrm{~g}, 80 \%$ from 17) as an oil, $v_{\max } / \mathrm{cm}^{-1} 1712$ (conj. $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$) and 1657 ($\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 0.03$ and 0.05 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e} \times 2$), 0.90 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{H}^{\mathrm{t}}$, $1.24\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5,5-\mathrm{H}_{3}\right), 2.10(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}), 3.70$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right), 4.19(1 \mathrm{H}, q d, J 6.5$ and $1,4-\mathrm{H})$ and $5.94(1 \mathrm{H}$, J 1, 2-H) (Found: M^{+}, 258.163. $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}$ requires M , 258.165).

(E)-4-(tert-B utyIdimethyIsiloxy)-3-methylpent-2-en-1-ol 21

A ccording to the procedure described for the preparation of the alcohol 19 from the ester 18, reduction of the ester $20(4.91 \mathrm{~g})$ with LAH followed by purification by SCC (ether-hexane, 3:7) afforded the alcohol $21(3.63 \mathrm{~g}, 83 \%)$ as an oil, $v_{\max } / \mathrm{cm}^{-1} 3613$ and $3460(\mathrm{OH}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.02$ and 0.05 (each $3 \mathrm{H}, \mathrm{s}$, $\mathrm{SiMe} \times 2), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.20\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5,5-\mathrm{H}_{3}\right), 1.47(1$ $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.64(3 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{M} \mathrm{e}), 4.18\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5,1-\mathrm{H}_{2}\right)$, $4.18(1 \mathrm{H}, \mathrm{br} \mathrm{q}, \mathrm{J} 6.5,4-\mathrm{H})$ and $5.60(1 \mathrm{H}$, tquint, J 6.5 and 1.5 , 2-H) [Found: $(\mathrm{M}-\mathrm{Me})^{+}, 215.146 . \mathrm{C}_{11} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Si}$ requires m / z, 215.147].

Preparation of the phosphonium salt 22

A solution of $\mathrm{LiCl}(738 \mathrm{mg}, 17.4 \mathrm{mmol})$ in dry dimethylformamide (DM F) ($15 \mathrm{~cm}^{3}$) was added to a stirred mixture of the alcohol $21(3.63 \mathrm{~g}, 15.8 \mathrm{mmol})$ in γ-collidine ($2.55 \mathrm{~cm}^{3}, 19.0$ mmol) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min . To this reaction mixture was added $\mathrm{M} \mathrm{sCl}\left(1.34 \mathrm{~cm}^{3}, 17.3 \mathrm{mmol}\right)$ and stirring of the mixture was continued at $0^{\circ} \mathrm{C}$ for 1 h and at room temp. for 3 h . The mixture was poured into ice-water and extracted with ether. The organic layer was washed successively with aq. $3 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts provided a residue, which was purified by SCC (ether-hexane, $5: 95$) to afford the corresponding chloride ($3.38 \mathrm{~g}, 86 \%$ from 21) as an oil, $\delta_{\mathbf{H}}(300 \mathrm{M} \mathrm{Hz}) 0.02$ and 0.05 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2$), $0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{t}^{\mathrm{t}}\right), 1.20(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 6.5, CHM e), 1.68 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.5,=\mathrm{CM}$ e), $4.10(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8$, $\left.\mathrm{CH}_{2} \mathrm{Cl}\right), 4.17(1 \mathrm{H}, \mathrm{br}$ q, J $6.5, \mathrm{CH}$ OTBS $)$ and $5.64(1 \mathrm{H}$, tquint, J 8 and $1.5,=\mathrm{CH}$).
Subsequently, triphenylphosphine ($4.28 \mathrm{~g}, 16.3 \mathrm{mmol}$) and triethylamine $\left(0.1 \mathrm{~cm}^{3}\right)$ were added to a solution of the above chloride ($3.38 \mathrm{~g}, 13.6 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}\left(15 \mathrm{~cm}^{3}\right.$) and the mixture was refluxed for 20 h . Evaporation off of the solvent gave a residue, which was washed with ether to provide the phosphonium salt $22\left(5.88 \mathrm{~g}, 73 \%\right.$ from 21) as a solid, $\delta_{\mathrm{H}}(300 \mathrm{MHz})$ -0.14 and -0.04 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2$), $0.74\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 1.08$ (3 H, d, J 6, CHM e), 1.42 ($3 \mathrm{H}, \mathrm{brd}, \mathrm{J} 3,=\mathrm{CM}$ e), $4.04(1 \mathrm{H}$, br quint, J 6, CH OTBS), 4.53 and 4.71 (each $1 \mathrm{H}, \mathrm{td}, \mathrm{J} 15.5$ and $\left.7.5, \mathrm{CH}_{2} \mathrm{P}\right), 5.47(1 \mathrm{H}, \mathrm{br} q, \mathrm{~J} 7.5,=\mathrm{CH})$ and $7.65-7.89(15 \mathrm{H}, \mathrm{m}$, ArH).

($2 \mathrm{E}, 4 \mathrm{E}, 6 \mathrm{E}, 8 \mathrm{E} / \mathrm{Z}, 10 \mathrm{E}$)-2,7,11-T rimethyl-12-oxotrideca-2,4,6,8,10-pentaenal 24a and 24b

A solution of $\mathrm{NaOMe}\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in $\mathrm{MeOH} ; 3.10 \mathrm{~cm}^{3}, 3.10$ mmol) was added to an ice-cooled solution of the phosphonium salt $22(1.06 \mathrm{~g}, 2.08 \mathrm{mmol})$ and the C_{10}-dialdehyde 23 ($200 \mathrm{mg}, 1.22 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right.$). A fter being stirred at room temp. for 30 min , the reaction mixture was diluted with ether. The organic layer was treated by standard work-up to give a residue, which was purified by SCC (acetone-hexane, $15: 85$) to afford an isomeric mixture of condensed products. This was dissolved in THF ($20 \mathrm{~cm}^{3}$) and a solution of TBAF (1.0 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ in THF; $2.5 \mathrm{~cm}^{3}, 2.5 \mathrm{mmol}$) was added. A fter being stirred at room temp. for 3 h , the reaction mixture was diluted with ether. Theorganic layer was followed by standard work-up to provide a residue, which was purified by SCC (acetone-
hexane, $2: 8$). The resulting hydroxy compound was dissolved in a mixture of ether-hexane ($1: 1$) and shaken with active $\mathrm{M} \mathrm{NO}_{2}$ $(4.0 \mathrm{~g})$ at room temp. for 5 h . The mixture was filtered through Celite. Evaporation of the filtrate gave a residue, which was purified by SCC (acetone-hexane, 2:8) and then PHPLC [LiChrosorb CN $60(7 \mu \mathrm{~m}) 1.0 \times 25 \mathrm{~cm}$; THF-hexane, 15:85] to afford the all-E-oxo pentaenal 24a ($125 \mathrm{mg}, 42 \%$ from 23) and the $8 Z$-isomer $\mathbf{2 4 b}$ ($23 \mathrm{mg}, 8 \%$ from $\mathbf{2 3}$) as yellow solids.
Compound 24a: $\lambda_{\max }(E t O H) / n m 393$ and 413; $v_{\max } / \mathrm{cm}^{-1} 1660$ (conj. CO and conj. CHO) and $1606(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 1.91$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 0.5,2-\mathrm{M} \mathrm{e}$), $1.96(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.5,11-\mathrm{M} \mathrm{e}$), 2.07 (3 H , br s, 7-M e), 2.38 ($3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{eCO}$), 6.43 (1 H, br d, J 11.5, 6-H), 6.67 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.5,8-\mathrm{H}$), 6.74 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5$ and 10.5, 9-H), 6.79 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5$ and $11.5,4-\mathrm{H}$), 6.97 ($1 \mathrm{H}, \mathrm{br}$ d, J $11.5,3-\mathrm{H}$), 7.03 (1 H, dd, J 14.5 and $11.5,5-\mathrm{H}$), 7.14 (1 H , dd-like, J 10.5 and 1.5, $10-\mathrm{H}$) and $9.49(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$ (Found: $\mathrm{M}^{+}, 244.147$. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{M}, 244.146$).
Compound 24b: $\lambda_{\text {max }}(E t O H) / n m 231,288,389$ and 409; $v_{\text {max }} /$ $\mathrm{cm}^{-1} 1655$ (conj. CO and conj. CH O) and $1605\left(\mathrm{C}=\mathrm{C}\right.$); $\delta_{\mathrm{H}}(500$ M Hz) 1.90 ($3 \mathrm{H}, \mathrm{br}$ s, 2-M e), 1.93 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,11-\mathrm{M} \mathrm{e)}$,2.18 (3 $\mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{M} \mathrm{e}$), 2.36 ($3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{eCO}$), 6.34 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12,8-\mathrm{H}$), $6.40(1 \mathrm{H}, \mathrm{brd}, \mathrm{J} 12,6-\mathrm{H}), 6.44(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 12,9-\mathrm{H}), 6.77(1 \mathrm{H}, \mathrm{dd}$, J 14.5 and $11.5,4-\mathrm{H}), 6.98(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 11.5,3-\mathrm{H}), 7.00(1 \mathrm{H}$, dd, J 14.5 and $11.5,5-H$), 7.62 (1 H, br d, J $12,10-\mathrm{H}$) and 9.49 (1 H , s, CHO) (Found: M ${ }^{+}$, 244.147).

Preparation of the analogue 8

A solution of $\mathrm{NaOMe}\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in $\mathrm{MeOH} ; 1.3 \mathrm{~cm}^{3}, 1.3$ mmol) was added to an ice-cooled solution of the Wittig salt $15{ }^{8}(560 \mathrm{mg}, 1.04 \mathrm{mmol})$ and the aldehyde 24a ($63 \mathrm{mg}, 0.26$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$. A fter being stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h , the reaction mixture was diluted with ether. The organic layer was followed by standard work-up to provide a residue, which was purified by SCC (ether-hexane, 1:3) followed by PLC (ether-hexane, 1:3) to afford an isomeric mixture [$82 \mathrm{mg}, 74 \%$ from 24a; all-E (analogue 8):13Z ~1:1]. PHPLC separation [LiChrosorb Si $60(5 \mu \mathrm{~m}) 1.0 \times 25 \mathrm{~cm}$; THF-hexane, 4:96] of the mixture provided the analogue 8 and its $13 Z$-isomer as red solids. A nalogue 8: $\lambda_{\max }(E t O H) / n m 267,447$ and 460 sh; $\lambda_{\text {max }}{ }^{-}$ (hexane)/nm 263, 421, 444 and $472 ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1649$ (conj. CO) and $1613(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 0.82$ and 0.91 (each $3 \mathrm{H}, \mathrm{s}$, 6'-gem-M e), 1.59 (3 H, d, J 1.5, 2'-M e), 1.92 (3 H, s, 16-M e), $1.94(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{M} \mathrm{e}$), 1.99 ($6 \mathrm{H}, \mathrm{s}, 7-\mathrm{and} 12-\mathrm{M} \mathrm{e}$), 2.19 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 9.5, $\left.1^{\prime}-\mathrm{H}\right), 2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{eCO}), 5.42\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\left.3^{\prime}-\mathrm{H}\right), 5.56(1 \mathrm{H}$, dd, J 15.5 and $9.5,18-\mathrm{H}$), 6.11 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.5,17-\mathrm{H}$), $6.13(1 \mathrm{H}$, br d, J $11.5,15-\mathrm{H}), 6.26(1 \mathrm{H}, \mathrm{br}$ d, J $11.5,11-\mathrm{H}), 6.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $15,13-\mathrm{H}), 6.40(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 11.5,8-\mathrm{H}), 6.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and $10.5,5-\mathrm{H}), 6.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14$ and 11.5, 9-H), $6.67(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 15 and $11.5,14-\mathrm{H}), 6.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,6-\mathrm{H}), 6.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14$ and $11.5,10-\mathrm{H}$) and $7.14(1 \mathrm{H}$, dd-like, J 10.5 and $1.5,4-\mathrm{H}$) (Found: $\mathrm{M}^{+}, 430.323 . \mathrm{C}_{31} \mathrm{H}_{42} \mathrm{O}$ requires $\mathrm{M}, 430.323$).

13Z-I somer: $\lambda_{\text {max }}($ EtOH $) / \mathrm{nm} 268,332$ and 445; $\lambda_{\text {max }}($ hexane $) /$ $\mathrm{nm} 265,319,328,421,442$ and $470 ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1659$ and 1649 (split) (conj. CO) and 1609 ($\mathrm{C}=\mathrm{C}$); ; $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 0.83$ and 0.91 (each $3 \mathrm{H}, \mathrm{s}, 6^{\prime}$-gem-M e), 1.59 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.5,2^{\prime}-\mathrm{M} \mathrm{e}$), 1.89 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,16-\mathrm{Me}$), 1.94 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{M} \mathrm{e}$), 1.99 ($3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}$), $2.13\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{Me}\right.$), $2.19\left(1 \mathrm{H}\right.$, br d, J $\left.9.5,1^{\prime}-\mathrm{H}\right), 2.37(3 \mathrm{H}, \mathrm{s}$, M eCO), $5.42\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $3^{\prime}-\mathrm{H}$), $5.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.5$ and 9.5 , $18-\mathrm{H}), 5.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12,13-\mathrm{H}), 6.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.5,17-\mathrm{H}), 6.32$ (1 H, br d, J 11.5, 11-H), 6.34 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 12,14-\mathrm{H}$), 6.41 ($1 \mathrm{H}, \mathrm{br}$ d, J $11.5,8-\mathrm{H}), 6.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and $10.5,5-\mathrm{H}), 6.63(1 \mathrm{H}, \mathrm{br}$ d, J $12,15-\mathrm{H}), 6.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14$ and $11.5,9-\mathrm{H}), 6.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $15,6-\mathrm{H}), 6.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14$ and $11.5,10-\mathrm{H})$ and $7.14(1 \mathrm{H}$, dd-like, J 10.5 and 1, 4-H) (Found: M^{+}, 430.323).

Preparation of the analogue 9

Following the procedure described for the preparation of the analogue 8, Wittig reaction between the phosphonium salt $16(242 \mathrm{mg}, 0.55 \mathrm{mmol})$ and the aldehyde 24a ($54 \mathrm{mg}, 0.22$ $\mathrm{mmol})$ followed by purification by SCC (ether-hexane, 2:3)
gave an isomeric mixture [$62 \mathrm{mg}, 87 \%$ from 24a; all-E (analogue 9):13Z ~1:1]. PHPLC separation [LiChrosorb Si $60(5 \mu \mathrm{~m})$ $1.0 \times 30 \mathrm{~cm}$; THF-hexane, 4:96] of the mixture in the dark provided the analogue 9 and its $13 Z$-isomer as red solids. A nalogue 9: $\lambda_{\text {max }}(E t O H) / n m 265,447$ and 460sh; $\lambda_{\text {max }}($ hexane $) /$ $\mathrm{nm} 261,418,441$ and $469 ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1655$ and 1645 (split) (conj. CO) and 1611 ($\mathrm{C}=\mathrm{C}$); $\nu_{\text {max }} / \mathrm{cm}^{-1}$ 1647, 1607, 1574 and 1530 (conj. CO and $\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 1.83$ ($3 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7$ and 1, 18-M e), 1.91 ($3 \mathrm{H}, \mathrm{s}, 16-\mathrm{Me}$), 1.94 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,3-\mathrm{M} \mathrm{e}$), 1.99 ($6 \mathrm{H}, \mathrm{s}, 7-\mathrm{M}$ e and $12-\mathrm{M} \mathrm{e}$), $2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{eCO}$), $5.77(1 \mathrm{H}, \mathrm{dq}$, J 15.5 and $7,18-\mathrm{H}), 6.09(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 11,15-\mathrm{H}), 6.16(1 \mathrm{H}$, dd-like, J 15.5 and 1, 17-H), 6.26 (1 H, br d, J 12, 11-H), 6.34 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,13-\mathrm{H}$), $6.39(1 \mathrm{H}$, br d, J $11.5,8-\mathrm{H}), 6.58(1 \mathrm{H}, \mathrm{dd}$, J 15 and $10.5,5-\mathrm{H}), 6.62(1 \mathrm{H}, \mathrm{dd}$, J 14 and $11.5,9-\mathrm{H}), 6.65$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and $11,14-\mathrm{H}$), 6.66 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,6-\mathrm{H}$), 6.73 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14$ and $12,10-\mathrm{H}$) and $7.14(1 \mathrm{H}$, dd-like, J 10.5 and $1,4-\mathrm{H}$) (Found: $\mathrm{M}^{+}, 322.230$. Calc. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}: \mathrm{M}, 322.230$).

13Z-I somer: $\lambda_{\text {max }}($ EtOH $) / \mathrm{nm} 266,329$ and 442; $\lambda_{\text {max }}$ (hexane)/ nm 262, 312, 325, 418, 439 and 468; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1644$ (conj. CO) and $1611(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.83(3 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7$ and 1 , $18-\mathrm{M} \mathrm{e}$), 1.88 ($3 \mathrm{H}, \mathrm{s}, 16-\mathrm{Me}$), 1.94 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,3-\mathrm{Me}$), 1.99 (3 H , $\mathrm{s}, 7-\mathrm{Me}$), $2.10(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{Me}$), $2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{eCO}), 5.80(1 \mathrm{H}$, dq, J 16 and $7,18-\mathrm{H}$), $5.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12,13-\mathrm{H}), 6.19(1 \mathrm{H}, \mathrm{dd}-$ like, J 16 and $1,17-\mathrm{H}), 6.30(1 \mathrm{H}, \mathrm{br}$ d, J $11,11-\mathrm{H}), 6.33(1 \mathrm{H}, \mathrm{t}$, J $12,14-\mathrm{H}), 6.40(1 \mathrm{H}, \mathrm{br}$ d, J $11.5,8-\mathrm{H}), 6.58(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 12$, $15-\mathrm{H}$), 6.59 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and 11, 5-H), 6.63 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5$ and 11.5, 9-H), $6.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,6-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5$ and $11,10-\mathrm{H})$ and $7.15(1 \mathrm{H}$, dd-like, J 11 and $1,4-\mathrm{H})$ (Found: $\left.\mathrm{M}^{+}, 322.230\right)$.

2-M ethyl-3-(trifluoromethyIsulfonyloxy)cyclohex-2-enone 26

A suspension of sodium hydride (60% oil dispersion; $1.80 \mathrm{~g}, 45$ mmol) was added to a stirred, dry solution of 2 -methyl-cyclohexane-1,3-dione 25 ($3.78 \mathrm{~g}, 30 \mathrm{mmol}$) in THF ($20 \mathrm{~cm}^{3}$)DM F $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , after which a solution of $\mathrm{Tf}_{2} \mathrm{NPh}(11.25 \mathrm{~g}, 31.5 \mathrm{mmol})$ in dry THF $\left(50 \mathrm{~cm}^{3}\right)$ was added dropwise at the same temperature The mixture was stirred at room temp. for 30 min . A fter the reaction had been quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with ether. The extracts were followed by standard work-up to give a residue, which was purified by CC (acetone-hexane, 1:3) to provide the oxo enol triflate 26 (7.58 $\mathrm{g}, 98 \%$) as an oil, $v_{\text {max }} / \mathrm{cm}^{-1} 1680$ (conj. CO) and 1414 and 1132 $\left(\mathrm{OSO}_{2}\right)$; $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 1.86(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{M} \mathrm{e}), 2.09(2 \mathrm{H}$, quint-like, J $\left.6.5,5-\mathrm{H}_{2}\right), 2.49\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.5\right.$ and $\left.7.5,4-\mathrm{H}_{2}\right)$ and $2.75(2 \mathrm{H}, \mathrm{m}$, $\left.6-\mathrm{H}_{2}\right) ; \delta_{\mathrm{c}}(75 \mathrm{M} \mathrm{Hz}) 9.19\left(\mathrm{CH}_{3}\right), 20.71,28.83$ and $36.66\left(\mathrm{CH}_{2} \times\right.$ 3), 118.36 ($q, J 318, \mathrm{CF}_{3}$), 128.14 (2-C), 162.11 (3-C) and 197.66 (CO) (Found: M^{+}, 258.016. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{M}, 258.017$).

3-(tert-B utyIdimethyIsiloxy)-2-methylcyclohex-1-enyl trifluoromethanesulfonate 27

NaBH_{4} ($380 \mathrm{mg}, 10.0 \mathrm{mmol}$) was added to a stirred solution of the oxo enol triflate $26(2.58 \mathrm{~g}, 10.0 \mathrm{mmol})$ in $\mathrm{M} \mathrm{eOH}\left(20 \mathrm{~cm}^{3}\right)$ $0^{\circ} \mathrm{C}$. A fter being stirred for a further 15 min , the reaction mixture was poured into ice-water. The organics were extracted with ether followed by standard work-up to give the crude alcohol, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$. To this solution was added triethylamine ($1.54 \mathrm{~cm}^{3}, 11.0 \mathrm{mmol}$), 4 -(dimethylamino)pyridine (DMAP) ($1.34 \mathrm{~g}, 11.0 \mathrm{mmol}$) followed by TBSCI ($1.58 \mathrm{~g}, 10.5 \mathrm{mmol}$). The mixture was stirred at room temp. for 5 h , poured into chilled water and extracted with ether. The extracts were washed successively with aq. $3 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine Evaporation of the dried extracts gave a residue, which was purified by SCC (etherhexane, 5:95) to afford the TBS ether $27(2.54 \mathrm{~g}, 68 \%$ from 26) as an oil, $v_{\text {max }} / \mathrm{cm}^{-1} 1402$ and $1133\left(\mathrm{OSO}_{2}\right)$; $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.09$ and 0.10 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2$), $0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{\mathrm{t}} \mathrm{Bu}\right), 1.6-2.0$ (6 $\mathrm{H}, \mathrm{m}, 4-, 5-$ and $\left.6-\mathrm{H}_{2}\right), 1.79(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 2,2-\mathrm{M} \mathrm{e})$ and $4.21(1 \mathrm{H}, \mathrm{br}$ t -like, J 5, 3-H) (Found: M^{+}, 374.119. $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{SSi}$ requires M, 374.120).
(E)-4-[3'-(tert-B utyldimethylsiloxy)-2'-methylcyclohex-1'-enyl]-but-3-en-2-one 28
$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(273 \mathrm{mg}, 0.39 \mathrm{mmol})$ was added to a solution of the vinyl triflate 27 ($4.84 \mathrm{~g}, 12.9 \mathrm{mmol}$), methyl vinyl ketone ($5.24 \mathrm{~cm}^{3}, 64.7 \mathrm{mmol}$) and triethylamine ($6.32 \mathrm{~cm}^{3}, 45.2 \mathrm{mmol}$) in dry DM F ($50 \mathrm{~cm}^{3}$). The mixture was heated and stirred at $75^{\circ} \mathrm{C}$ for 7 h . A fter cooling, the reaction mixture was diluted with ether and washed successively with aq. $3 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried solution provided a residue, which was purified by SCC (ether-hexane, 1:9) to furnish the dienone $28(3.47 \mathrm{~g}, 91 \%)$ as an oil, $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ 291; $v_{\text {max }} / \mathrm{cm}^{-1} 1660$ (conj. CO) and 1613 and 1585 ($\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.11$ and 0.13 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2\right), 0.91(9 \mathrm{H}, \mathrm{s}$, SitBu), 1.5-1.9 ($4 \mathrm{H}, \mathrm{m}, 4^{\prime}-$ and $5^{\prime}-\mathrm{H}_{2}$), 1.96 ($3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{2}^{\prime}-\mathrm{Me}$), 2.1-2.4($2 \mathrm{H}, \mathrm{m}, \mathrm{G}^{\prime}-\mathrm{H}_{2}$), $2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{CCO}), 4.13(1 \mathrm{H}, \mathrm{brt}, \mathrm{J} 5$, $\left.3^{\prime}-\mathrm{H}\right), 6.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,3-\mathrm{H})$ and $7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,4-\mathrm{H})$ (Found: M^{+}, 294.202. $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2}$ Si requires $\mathrm{M}, 294.202$).

E thyl ($2 \mathrm{E} / \mathrm{Z}, 4 \mathrm{E}$)-5-[3'-(tert-butyldimethylsiloxy)-2'-methyl-cyclohex-1'-enylf-3-methylpenta-2,4-dienoate 29

A solution of BuLi ($1.71 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane; $7.02 \mathrm{~cm}^{\mathbf{3}}, 12$ mmol) was added to a stirred solution of diisopropylamine ($1.68 \mathrm{~cm}^{3}, 12 \mathrm{mmol}$) in dry THF ($10 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for a further 30 min . To this LDA solution was added dropwise a solution of ethyl TM Sacetate ($1.92 \mathrm{~g}, 12$ $\mathrm{mmol})$ in dry THF ($15 \mathrm{~cm}^{3}$). The mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$, after which a solution of the ketone $28(2.94 \mathrm{~g}, 10$ mmol) in dry THF ($15 \mathrm{~cm}^{3}$) was added dropwise at the same temp. and stirring was continued for a further 15 min . A fter being quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with ether followed by standard work-up to give a residue, which was purified by SCC (ether-hexane, 5:95) to afford an isomeric mixture of the trienoate $29(3.44 \mathrm{~g}, 95 \%$; $2 \mathrm{E}: 2 \mathrm{Z}=4: 3$) as a solid, $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 310 ; v_{\max } / \mathrm{cm}^{-1} 1700$ (conj. $\mathrm{CO}_{2} \mathrm{Et}$) and $1607(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.10$ and 0.12 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2$), $0.91(9 \mathrm{H}, \mathrm{s}, \mathrm{SitBu}), 1.28(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.45-1.90\left(4 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{and} 5^{\prime}-\mathrm{H}_{2}\right), 1.90(3 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.2^{\prime}-\mathrm{M} \mathrm{e}\right), 2.05-2.38\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}\right), 2.06(9 / 7 \mathrm{H})$ and $2.35(12 / 7$ H) (each d, J 1, 3-M e), $4.12\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.17(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7$, $\left.0 \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.66(3 / 7 \mathrm{H})$ and $5.80(4 / 7 \mathrm{H})$ (each s, 2-H), 6.26 $(4 / 7 \mathrm{H})$ and $7.84(3 / 7 \mathrm{H})$ (each d, J $16,4-\mathrm{H}$) and $7.06(1 \mathrm{H}, \mathrm{d}$, J 16, 5-H) (Found: M^{+}, 364.242. $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}$ requires M , 364.244).

(2E/Z ,4E)-3-M ethyl-5-(2'-methyl-3'-oxocyclohex-1'-enyl)penta-2,4-dienal 30

A ccording to the procedure for the preparation of the alcohol 19 from the ester 18 , reduction of the trienoate 29 ($750 \mathrm{mg}, 2.06$ mmol) with LAH produced a crude alcohol, which without purification was dissolved in THF ($20 \mathrm{~cm}^{3}$) and a solution of TBAF ($1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ in THF; $4.3 \mathrm{~cm}^{3}, 4.3 \mathrm{mmol}$) was added. A fter being stirred at room temp. for 24 h , the reaction mixture was diluted with ether followed by standard work-up to give an oil, which was purified by SCC (acetone-hexane, $2: 3$) to afford an isomeric mixture of the corresponding diol ($375 \mathrm{mg}, 87 \%$ from 29; $2 \mathrm{E}: 2 \mathrm{Z}=3: 2$) as an oil, $v_{\text {max }} / \mathrm{cm}^{-1} 3606$ and $3444(\mathrm{OH})$ and $1624(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 1.85(9 / 5 \mathrm{H}, \mathrm{s})$ and $1.94(21 / 5 \mathrm{H}$, br s) (2 '- and $3-\mathrm{Me}$), $4.07\left(1 \mathrm{H}, \mathrm{brs}, 3^{\prime}-\mathrm{H}\right), 4.30(6 / 5 \mathrm{H})$ and 4.32 $(4 / 5 \mathrm{H})$ (each d, J $\left.7,1-\mathrm{H}_{2}\right), 5.58(2 / 5 \mathrm{H})$ and $5.70(3 / 5 \mathrm{H})$ (each br $\mathrm{t}, \mathrm{J} 7,2-\mathrm{H})$ and $6.30(3 / 5 \mathrm{H}), 6.62(2 / 5 \mathrm{H}), 6.71(2 / 5 \mathrm{H})$ and 6.64 ($3 / 5 \mathrm{H}$) (each d, J 16,4 - and $5-\mathrm{H}$).
Subsequently, a solution of the diol ($375 \mathrm{mg}, 1.80 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was shaken with active $\mathrm{MnO}_{2}(7.5 \mathrm{~g})$ at room temp. for 4 h . The mixture was filtered through Celite. Evaporation of the filtrate followed by purification by SCC ($\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2$: 98) provided the oxo trienal $\mathbf{3 0}$ ($265 \mathrm{mg}, 63 \%$ from 29) as an orange solid, $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 329 ; v_{\text {max }} / \mathrm{cm}^{-1} 1656$ (conj. CO and conj. CHO) and $1599(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 1.98$ ($3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{M} \mathrm{e}$), 2.05 $\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right), 2.19(6 / 5 \mathrm{H})$ and $2.37(9 / 5 \mathrm{H})$ (each s, $3-\mathrm{M} \mathrm{e}$), $2.49\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{2}\right), 2.58\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}\right), 6.03(2 / 5 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.5)$
and $6.09(3 / 5 \mathrm{H}, \mathrm{d}, \mathrm{J} 8)$ (together $2-\mathrm{H}), 6.71(3 / 5 \mathrm{H})$ and 7.66 $(2 / 5 \mathrm{H})$ (each d, J 16, 4-H), $7.17(2 / 5 \mathrm{H})$ and $7.26(3 / 5 \mathrm{H})$ (each d, J $16,5-\mathrm{H}$) and $10.18(3 / 5 \mathrm{H}, \mathrm{d}, \mathrm{J} 8)$ and $10.22(2 / 5 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.5)$ (CHO) (Found: M^{+}, 204.115. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{M}, 204.115$).
($2 \mathrm{E}, 4 \mathrm{E}, 6 \mathrm{E} / \mathrm{Z}, 8 \mathrm{E}$)-2,7-D imethyl-9-(2'-methyl-3'-oxocyclohex-1'-enyl)nona-2,4,6,8-tetraenal 32a and 32b
In the same manner as described for the preparation of the analogue 8 , Wittig reaction between the phosphonium salt 31^{14} $(1.21 \mathrm{~g}, 2.59 \mathrm{mmol})$ and the aldehyde $30(265 \mathrm{mg}, 1.30 \mathrm{mmol})$ followed by purification by SCC (acetone-hexane, 1:4) provided condensed products, which were dissolved in THF (30 cm^{3}). To this solution were added water ($1.5 \mathrm{~cm}^{3}$) and a solution of toluene-p-sulfonic acid ($\mathrm{p}-\mathrm{TsOH}$) ($0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in TH F ; 10 $\mathrm{cm}^{3}, 1.0 \mathrm{mmol}$) and the mixture was stirred at room temp. for 30 min, before being diluted with ether. The organic layer was washed successively with saturated aq. NaHCO_{3} and brine. Evaporation of the dried solution gave crude products, which without purification were dissolved in $\mathrm{CH}_{3} \mathrm{CN}\left(40 \mathrm{~cm}^{3}\right)$. To this solution was added a solution ($10 \mathrm{~cm}^{3}$) prepared from $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}(65 \mathrm{mg})$, triethylamine $\left(0.035 \mathrm{~cm}^{3}\right)$ and water $\left(6 \mathrm{~cm}^{3}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}\left(50 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temp. for 3 h . The solvent was evaporated off to give a residue, which was purified by SCC (acetone-hexane, 1:3) and then PHPLC [LiChrosorb Si $60(5 \mu \mathrm{~m}) 1.0 \times 30 \mathrm{~cm}$; TH F -hexane, 13:87] to afford the all-E -oxo pentaenal 32a ($265 \mathrm{mg}, 76 \%$ from 30) and the $6 Z$-isomer $\mathbf{3 2 b}$ ($47 \mathrm{mg}, 13 \%$ from 30) as orange solids. Compound 32a: $\lambda_{\max }(E t O H) / n m 395$ and $413 ; v_{\max } / \mathrm{cm}^{-1}$ 1655 (conj. CO and conj. CHO) and $1600(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}$) 1.91 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,2-\mathrm{Me}$), 1.97 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 1.5, \mathrm{2}^{\prime}-\mathrm{M} \mathrm{e}$), $2.02(2 \mathrm{H}$, quint-like, J $\left.6.5,5^{\prime}-\mathrm{H}_{2}\right), 2.08(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 0.5,7-\mathrm{Me}), 2.47(2 \mathrm{H}$, dd, J 7.5 and $\left.6,4^{\prime}-\mathrm{H}_{2}\right), 2.56\left(2 \mathrm{H}, \mathrm{brt}, \mathrm{J} 6,6^{\prime}-\mathrm{H}_{2}\right), 6.46(1 \mathrm{H}, \mathrm{br}$ d, J $12,6-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,8-\mathrm{H}), 6.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5$ and $11.5,4-\mathrm{H}), 6.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,9-\mathrm{H}), 6.98(1 \mathrm{H}, \mathrm{br}$ d, J $11.5,3-\mathrm{H}$), 7.05 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5$ and $12,5-\mathrm{H}$) and $9.49(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$ (Found: M^{+}, 270.161. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{2}$ requires M , 270.162).

Compound 32b: $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 238,295,389$ and 407sh; $v_{\text {max }} / \mathrm{cm}^{-1} 1655$ (conj. CO and conj. CHO) and $1600(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.90\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,2-\mathrm{Me}\right.$), $1.97\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 1.5, \mathrm{2}^{\prime}-\right.$ $\mathrm{M} \mathrm{e}), 2.04\left(2 \mathrm{H}\right.$, quint-like, J $6.5,5^{\prime}-\mathrm{H}_{2}$), 2.09 ($3 \mathrm{H}, \mathrm{s}, 7-\mathrm{M} \mathrm{e}$), 2.49 ($2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.5$ and $6,4^{\prime}-\mathrm{H}_{2}$), $2.63\left(2 \mathrm{H}\right.$, brt, J 6, $6^{\prime}-\mathrm{H}_{2}$), 6.35 (1 H, br d, J $11.5,6-\mathrm{H}$), 6.71 (1 H , dd, J 14.5 and 11.5, 4-H), 6.92 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,9-\mathrm{H}$), $6.98(1 \mathrm{H}, \mathrm{br}$ d, J 11.5, 3-H), $7.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 14.5 and $11.5,5-\mathrm{H}), 7.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,8-\mathrm{H})$ and $9.48(1 \mathrm{H}, \mathrm{s}$, CHO) (Found: $\mathrm{M}^{+}, 270.162$).

Preparation of the analogue 10

In the same manner as described for the preparation of the analogue 8, Wittig reaction between the phosphonium salt 16 ($675 \mathrm{mg}, 1.54 \mathrm{mmol}$) and the aldehyde 32a ($104 \mathrm{mg}, 0.39$ $\mathrm{mmol})$ followed by purification by $\mathrm{SCC}\left(\mathrm{M} \mathrm{eOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3: 97\right)$ furnished an isomeric mixture $[83 \mathrm{mg}, 62 \%$ from 32a; all-E (analogue 10): $\left.9^{\prime} \mathrm{Z} \sim 1: 1\right]$. PH PLC separation [LiChrosorb Si 60 $(5 \mu \mathrm{~m}) 1.0 \times 30 \mathrm{~cm}$; THF-hexane, 4:96] of the mixture in the dark provided the analogue $\mathbf{1 0}$ and its $9^{\prime} \mathrm{Z}$-isomer as red solids. A nalogue 10: $\lambda_{\text {max }}(E t O H) / n m 268,445$ and 460 sh; $\lambda_{\text {max }}$ (hexane)/ nm 264, 416, 439 and 467; $v_{\text {max }} / \mathrm{cm}^{-1} 1643,1600,1574$ and 1532 (conj. CO and $\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.82(3 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7$ and 1 , $14^{\prime}-\mathrm{Me}$ e, $1.91\left(3 \mathrm{H}, \mathrm{s}, 12^{\prime}-\mathrm{Me}\right.$), 1.95 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 1,2-\mathrm{Me}$), 1.97$2.02\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 1.98$ ($3 \mathrm{H}, \mathrm{s}, 8^{\prime}-\mathrm{M} \mathrm{e}$), $2.00\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{M} \mathrm{e}\right.$), $2.45\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.5\right.$ and $\left.6,6-\mathrm{H}_{2}\right), 2.56\left(2 \mathrm{H}, \mathrm{brt}\right.$, J 6, 4- $\left.\mathrm{H}_{2}\right), 5.76$ ($1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 15.5$ and $7,14^{\prime}-\mathrm{H}$), 6.08 (1 H, br d, J $11.5,11^{\prime}-\mathrm{H}$), 6.16 (1 H , dd-like, J 15.5 and 1, 13'-H), 6.26 (1 H, br d, J 11.5 , $\left.7^{\prime}-\mathrm{H}\right), 6.34\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,9^{\prime}-\mathrm{H}\right), 6.42\left(1 \mathrm{H}, \mathrm{br} d, \mathrm{~J} 11.5,4^{\prime}-\mathrm{H}\right)$, $6.64\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14\right.$ and 11.5, $\left.5^{\prime}-\mathrm{H}\right), 6.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and 11.5, $\left.10^{\prime}-H\right), 6.72\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,2^{\prime}-\mathrm{H}\right), 6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14$ and 11.5 , $6^{\prime}-\mathrm{H}$) and 6.76 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,1^{\prime}-\mathrm{H}$) (Found: $\mathrm{M}^{+}, 348.246$. $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}$ requires $\mathrm{M}, 348.245$).

9'Z-I somer: $\lambda_{\text {max }}\left(\right.$ EtOH)/nm 269, 332 and 442; $\lambda_{\text {max }}$ (hexane)/ $\mathrm{nm} 265,314 \mathrm{sh}, 327,417 \mathrm{sh}, 437$ and $465 ; v_{\text {max }} / \mathrm{cm}^{-1} 1642,1600$,

1566 and 1532 (conj. CO and $\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 1.83$ (3 H , dd, J 7 and $1,14^{\prime}-\mathrm{Me}$), 1.88 ($3 \mathrm{H}, \mathrm{s}, 12^{\prime}-\mathrm{Me}$ e), 1.96 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 1.5$, 2-Me), 1.97-2.02 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}$), $2.00\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{M} \mathrm{e}\right.$), $2.10(3 \mathrm{H}$, $\left.\mathrm{s}, 8^{\prime}-\mathrm{M} \mathrm{e}\right), 2.45(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.5$ and 6, 6-H 2), $2.56(2 \mathrm{H}, \mathrm{brt}$, J 6, $\left.4-\mathrm{H}_{2}\right), 5.80\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 15.5\right.$ and $\left.7,14^{\prime}-\mathrm{H}\right), 5.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12$, $9^{\prime}-\mathrm{H}$), 6.19 (1 H, dd-like, J 15.5 and $1,13^{\prime}-\mathrm{H}$), $6.30(1 \mathrm{H}$, br d, J $10.5,7^{\prime}-\mathrm{H}$), 6.33 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 12,10^{\prime}-\mathrm{H}$), 6.43 ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 10.5$, $4^{\prime}-\mathrm{H}$), 6.57 (1 H, br d, J $12,11^{\prime}-\mathrm{H}$), 6.64 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14$ and 10.5 , $5^{\prime}-\mathrm{H}$), $6.70\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14\right.$ and $10.5,6^{\prime}-\mathrm{H}$), $6.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16$, $2^{\prime}-\mathrm{H}$) and 6.77 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,1^{\prime}-\mathrm{H}$) (Found: $\mathrm{M}^{+}, 348.246$).

E thyl 2-[2-methoxycyclohex-2-en-(E/Z)-ylidene]acetate 36a and 36b

A solution of BuLi ($1.62 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane; $1.62 \mathrm{~cm}^{3}, 2.62$ mmol) was added to a stirred solution of ethyl (diethoxyphosphoryl)acetate $35(587 \mathrm{mg}, 2.62 \mathrm{mmol})$ in dry THF $\left(3 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred for a further 30 min . To this mixture was added dropwise a solution of the ketone $34{ }^{16}$ (110 $\mathrm{mg}, 0.87 \mathrm{mmol})$ in dry THF $\left(3 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the mixture was refluxed for 1 h . A fter cooling, the reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with ether followed by standard work-up to give an oil, which was purified by SCC (ether-hexane, 1:4) to furnish the E-isomer $\mathbf{3 6 a}$ (53 mg , 31%) and the Z -isomer $\mathbf{3 6 b}$ ($61 \mathrm{mg}, 36 \%$) as pale yellow oils. Compound 36a: $\lambda_{\text {max }}(E t O H) / n m 221$ and 285; $v_{\text {max }} / \mathrm{cm}^{-1} 1700$ (conj. $\mathrm{CO}_{2} \mathrm{Et}$) and 1625 and $1610(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 1.28$ (3 $\mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.67\left(2 \mathrm{H}\right.$, quint-like, J $\left.6.5,5^{\prime}-\mathrm{H}_{2}\right), 2.25$ (2 H , q-like, J $5,4^{\prime}-\mathrm{H}_{2}$), $3.01\left(2 \mathrm{H}\right.$, ddd, J $6.5,5$ and $1.5,6^{\prime}-\mathrm{H}_{2}$), $3.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}\right.$ e), $4.16\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.26(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 5, $3^{\prime}-\mathrm{H}$) and $6.19(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H})$ (Found: M^{+}, 196.110. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{M}, 196.110$).
Compound 36b: $\lambda_{\text {max }}(E t O H) / n m 210$ and 256; $v_{\text {max }} / \mathrm{cm}^{-1} 1708$ (conj. $\mathrm{CO}_{2} \mathrm{Et}$) and $1610(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 1.31(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.73\left(2 \mathrm{H}\right.$, quint, J $\left.6,5^{\prime}-\mathrm{H}_{2}\right), 2.24(2 \mathrm{H}, \mathrm{td}, \mathrm{J} 6$ and $\left.4,4^{\prime}-\mathrm{H}_{2}\right), 2.37\left(2 \mathrm{H}\right.$, ddd, J 6, 4 and $\left.1.5,6^{\prime}-\mathrm{H}_{2}\right), 3.52(3 \mathrm{H}, \mathrm{s}$, OM e), $4.20\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH} \mathrm{H}_{3}\right), 5.02(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 4$ and 1.5 , $\left.3^{\prime}-\mathrm{H}\right)$ and $5.54(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 196.110$).

E thyl (E)-2-[2,2-dimethox ycyclohexylidene]acetate 38

Following the procedure described for the preparation of the ylidene esters 36ab, Emmons-H orner reaction between the phosphonate $35(9.82 \mathrm{~g}, 43.8 \mathrm{mmol})$ and the ketone $37^{16}(2.31 \mathrm{~g}$, 14.6 mmol) followed by purification by CC (ether-hexane, 1:4) provided the E -ylidene ester 38 ($3.16 \mathrm{~g}, 95 \%$) as an oil, $v_{\text {max }} /$ $\mathrm{cm}^{-1} 1704$ (conj. $\mathrm{CO}_{2} \mathrm{Et}$) and $1652(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 1.29$ (3 $\left.\mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.53-1.86\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 3\right), 2.82(2 \mathrm{H}$, t-like, J 6, CH 2), $3.14(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 2), 4.17(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.5$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$) and $6.18(1 \mathrm{H}, \mathrm{s},=\mathrm{CH})$ (Found: $\mathrm{M}^{+}, 228.134$. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{4}$ requires $\mathrm{M}, 228.136$).

(E) -2-[2,2-D imethox ycyclohexylidene]ethanol 39

A ccording to the procedure for the preparation of the alcohol 19 from the ester 18, reduction of the ester $38(3.00 \mathrm{~g}, 13.2$ mmol) with LAH produced a crude product, which was purified by SCC (acetone-hexane, $35: 65$) to yield the alcohol $39(2.36 \mathrm{~g}$, $96 \%)$ as an oil, $v_{\text {max }} / \mathrm{cm}^{-1} 3600$ and $3400(\mathrm{OH}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz})$ 1.42-1.80 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 3$), $2.16\left(3 \mathrm{H}\right.$, t-like, J $6, \mathrm{CH}_{2}$ and $\mathrm{OH}), 3.13(6 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e} \times 2)$, $4.24(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.5$ and 5 , $\mathrm{CH}_{2} \mathrm{OH}$) and $5.94(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5,=\mathrm{CH})$ (Found: $\mathrm{M}^{+}, 186.124$. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{M}, 186.126$).

Preparation of the phosphonium salts 41 and 42

A solution of $\mathrm{LiCl}(180 \mathrm{mg}, 4.24 \mathrm{mmol})$ in dry DMF $\left(4 \mathrm{~cm}^{3}\right)$ was added to a stirred mixture of the alcohol $39(750 \mathrm{mg}, 4.03$ mmol) in γ-collidine ($0.60 \mathrm{~cm}^{3}, 4.46 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min . To this reaction mixture was added $\mathrm{M} \mathrm{sCl}\left(0.33 \mathrm{~cm}^{3}, 4.26 \mathrm{mmol}\right)$ and stirring of the mixture was continued for a further 1.5 h . The mixture was poured into ice-water and extracted with ether. The organic layer was washed successively with aq. $3 \% \mathrm{HCl}$, saturated aq. NaHCO_{3}
and brine. Evaporation of the dried extracts provided a residue, which was purified by SCC (ether-hexane, 3:97) to afford the chloride 40 ($810 \mathrm{mg}, 98 \%$) as an oil, $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}$) $1.48-1.80$ (6 $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 3\right), 2.22\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6, \mathrm{CH}_{2}\right), 3.12(6 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e} \times 2)$, $4.13\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{CH}_{2} \mathrm{Cl}\right)$ and $6.03(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8,=\mathrm{CH})$.
Subsequently, triphenylphosphine ($1.13 \mathrm{~g}, 5.12 \mathrm{mmol}$) and triethylamine $\left(0.05 \mathrm{~cm}^{3}\right)$ were added to a solution of the chloride $40(810 \mathrm{mg}, 3.95 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}\left(30 \mathrm{~cm}^{3}\right)$ and the mixture was refluxed for 15 h . Evaporation of the solvent gave a residue, which was washed with ether to give a mixture of the phosphonium salts 41 and $42(1.77 \mathrm{~g} ; 41: 42 \sim 5: 1)$ as a foam, $\delta_{\mathbf{H}}(200 \mathrm{M} \mathrm{Hz}$) (inter alia) 3.42 (s, gem-OM e) and 3.63 (s, $=$ COM e).

($2 \mathrm{E}, 4 \mathrm{E}, 6 \mathrm{E}, 8 \mathrm{E}$)-2,7-D imethyl-10-[2'-oxocyclohex-(E)-ylidene] deca-2,4,6,8-tetraenal 43

In the same manner as described for the preparation of the oxo pentaenals 32ab, Wittig reaction between a mixture of the phosphonium salts 41 and 42 ($880 \mathrm{mg}, \sim 2 \mathrm{mmol}$) and the $\mathrm{C}_{10}{ }^{-}$ dialdehyde 23 ($164 \mathrm{mg}, 1.0 \mathrm{mmol}$) and successive hydrolysis with p -TsOH followed by treatment with the palladium complex catalyst gave a crude product. This was purified by SCC (THF-CH2Cl $2,5: 95$) and then PHPLC [LiChrosorb Si 60 (5 $\mu \mathrm{m}) 1.0 \times 30 \mathrm{~cm}$; THF-hexane, $13: 87$] to afford the all-E-oxo pentaenal 43 ($220 \mathrm{mg}, 81 \%$ from 23) as an orange solid, $\lambda_{\text {max }}($ ETOH $) / \mathrm{nm} 403$ and $420 ; v_{\text {max }} / \mathrm{cm}^{-1} 1668$ (conj. CO and conj. CHO) and 1596 and $1573(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 1.76-1.93$ ($4 \mathrm{H}, \mathrm{m}, 4^{\prime}-$ and $5^{\prime}-\mathrm{H}_{2}$), $1.90(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$), $2.04(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}$), $2.48\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7,3^{\prime}-\mathrm{H}_{2}\right), 2.70\left(2 \mathrm{H}, \mathrm{brt}, \mathrm{J} 6.5, \mathrm{6}^{\prime}-\mathrm{H}_{2}\right), 6.42(1 \mathrm{H}$, br d, J 11.5, $6-\mathrm{H}$), $6.59(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and $11,9-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{d}$, J $15,8-\mathrm{H}), 6.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5$ and 11.5, $4-\mathrm{H}), 6.96(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, J $11.5,3-\mathrm{H}), 7.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5$ and $11.5,5-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{dt}$, J 11 and $2,10-\mathrm{H}$) and 9.48 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$) (Found: $\mathrm{M}^{+}, 270.163$. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{M}, 270.162$).

Preparation of the analogue 11

In the same manner as described for the preparation of the analogue 8, Wittig reaction between the phosphonium salt 16 ($300 \mathrm{mg}, 0.69 \mathrm{mmol}$) and the aldehyde $43(54 \mathrm{mg}, 0.20 \mathrm{mmol})$ followed by purification by SCC (ether-hexane, 2:3) gave an isomeric mixture [55 mg, 79\% from 43; all-E (analogue 11): $\left.10^{\prime} \mathrm{Z} \sim 1: 1\right]$. PHPLC separation [LiChrosorb Si $60(5 \mu \mathrm{~m})$ $1.0 \times 30 \mathrm{~cm}$; THF-hexane, 4:96] of the mixture in the dark provided the analogue 11 and its 10 'Z-isomer as red solids. Analogue 11: $\lambda_{\text {max }}($ EtOH $) / \mathrm{nm} 270$ and 459; $\lambda_{\text {max }}($ hexane $) / \mathrm{nm}$ 267, 425sh, 447 and 475; $v_{\text {max }} / \mathrm{cm}^{-1} 1661,1597,1558$ and 1520 (conj. CO and $\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.76-1.89(4 \mathrm{H}, \mathrm{m}, 4$ - and $5-\mathrm{H}_{2}$), 1.82 ($3 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7$ and $1,15^{\prime}-\mathrm{M} \mathrm{e}$), 1.91 ($3 \mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{M} \mathrm{e}$), 1.96 ($3 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{M} \mathrm{e}$), 1.98 (3 H, s, 9'-M e), 2.46 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5$, $\left.6-\mathrm{H}_{2}\right), 2.67\left(2 \mathrm{H}, \mathrm{td}, \mathrm{J} 7\right.$ and $\left.2,3-\mathrm{H}_{2}\right), 5.76(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 15.5$ and 7 , $\left.15^{\prime}-\mathrm{H}\right), 6.08\left(1 \mathrm{H}, \mathrm{br}\right.$ d, J 11.5, 12^{\prime}-H), 6.16 (1 H , dd-like, J 15.5 and 1, $14^{\prime}-\mathrm{H}$), $6.25\left(1 \mathrm{H}, \operatorname{brd}, \mathrm{J} 11.5,8^{\prime}-\mathrm{H}\right), 6.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.5$, $\left.10^{\prime}-\mathrm{H}\right), 6.39\left(1 \mathrm{H}, \mathrm{brd}, \mathrm{J} 12,5^{\prime}-\mathrm{H}\right), 6.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and 12 , $\left.2^{\prime}-\mathrm{H}\right), 6.61\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5\right.$ and $\left.12,6^{\prime}-\mathrm{H}\right), 6.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5$ and $\left.11.5,11^{\prime}-H\right), 6.70\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,3^{\prime}-\mathrm{H}\right), 6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5$ and 11.5, $\left.7^{\prime}-\mathrm{H}\right)$ and $7.23\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 12\right.$ and $\left.2,1^{\prime}-\mathrm{H}\right)$ (Found: $\mathrm{M}^{+}, 348.244 . \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}$ requires $\mathrm{M}, 348.245$).

10'Z-I somer: $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 272,336,447$ and $455 \mathrm{sh} ; \lambda_{\text {max }}{ }^{-}$ (hexane)/nm 260sh, 268, 320sh, 333, 425sh, 445 and 475; $v_{\text {max }} /$ $\mathrm{cm}^{-1} 1660,1597,1558$ and 1523 (conj. CO and $\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(500$ M Hz) 1.76-1.90 ($4 \mathrm{H}, \mathrm{m}, 4$ - and $5-\mathrm{H}_{2}$), $1.83(3 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7$ and $1.5,15^{\prime}-\mathrm{Me}$ e), 1.88 ($3 \mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{Me}$), 1.97 ($3 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{M} \mathrm{e}$), 2.10 ($3 \mathrm{H}, \mathrm{s}, 9^{\prime}-\mathrm{M} \mathrm{e}$), $2.46\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5,6-\mathrm{H}_{2}\right), 2.67(2 \mathrm{H}, \mathrm{td}, \mathrm{J} 7$ and 2 , $\left.3-\mathrm{H}_{2}\right), 5.80\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 15.5\right.$ and $\left.7,15^{\prime}-\mathrm{H}\right), 5.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12$, 10'-H), 6.19 (1 H, dd-like, J 15.5 and $1.5,14^{\prime}-\mathrm{H}$), $6.29(1 \mathrm{H}$, br d, J $\left.11.5,8^{\prime}-\mathrm{H}\right), 6.32\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 12,11^{\prime}-\mathrm{H}\right), 6.39(1 \mathrm{H}, \mathrm{brd}, \mathrm{J} 11.5$, $5^{\prime}-\mathrm{H}$), $6.45(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and 12, 2'-H), 6.57 (1 H, br d, J 12 , $\left.12^{\prime}-\mathrm{H}\right), 6.61\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5\right.$ and $\left.11.5,6^{\prime}-\mathrm{H}\right), 6.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15$, $\left.3^{\prime}-\mathrm{H}\right), 6.71\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5\right.$ and $\left.11.5,7^{\prime}-\mathrm{H}\right)$ and $7.23(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}$ 12 and $2,1^{\prime}-\mathrm{H}$) (Found: $\mathrm{M}^{+}, 348.245$).

Ethyl ($2 \mathrm{E}, 4 \mathrm{E}$)-5-(5,5-dimethyl-1,3-dioxolan-2-yl)-4-methyl-penta-2,4-dienoate 45
A solution of BuLi ($1.63 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane; $13.0 \mathrm{~cm}^{3}, 21.2$ mmol) was added to a stirred solution of the phosphonate 35 $(4.65 \mathrm{~g}, 20.8 \mathrm{mmol})$ in dry TH F $\left(35 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred for a further 30 min . To this mixture was added dropwise a solution of the aldehyde $44^{14}(3.00 \mathrm{~g}, 16.3 \mathrm{mmol})$ in dry THF ($50 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ and stirring was continued at room temp. for 1 h . A fter being quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with ether followed by standard work-up to give an oil, which was purified by CC (etherhexane, $1: 3$) to furnish the dienoate $45(4.06 \mathrm{~g}, 98 \%)$ as an oil, $v_{\text {max }} / \mathrm{cm}^{-1} 1707$ (conj. $\mathrm{CO}_{2} \mathrm{Et}$) and $1626(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz})$ 0.76 and 1.23 (each $3 \mathrm{H}, \mathrm{s}$, gem-M e), $1.30(3 \mathrm{H}, \mathrm{t}$, J 7, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.88(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}$), 3.53 and 3.67 (each $2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.11, \mathrm{OCH}_{2} \times 2\right), 4.21\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6$, OCHO), $5.86(1 \mathrm{H}, \mathrm{brd}, \mathrm{j} 6,5-\mathrm{H}), 5.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,2-\mathrm{H})$ and $7.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,3-\mathrm{H})$ (Found: M^{+}, 254.151. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4}$ requires M, 254.152).

(2E , 4E)-5-(5,5-D imethyl-1,3-dioxolan-2-yl)-4-methylpenta-2,4dienal 46

A ccording to the procedure for the preparation of the alcohol 19 from the ester 18 , reduction of the dienoate 45 (6.71 g , 26.4 mmol) with LAH produced a crude alcohol, which without purification was dissolved in ether-hexane (1:3) and shaken with active $\mathrm{MnO}_{2}(48 \mathrm{~g})$ at room temp. for 6 h . The mixture was filtered through Celite. Evaporation of the filtrate gave a residue, which was purified by SCC (etherhexane, 1:4) to provide the dienal $46(2.79 \mathrm{~g}, 50 \%)$ as a solid, $v_{\text {max }} / \mathrm{cm}^{-1} 1681$ (conj. CHO) and 1643 and 1608 ($\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 0.77$ and 1.24 (each 3 H , s, gem-M e), $1.92(3 \mathrm{H}$, $\mathrm{s}, 4-\mathrm{Me}$), 3.55 and 3.68 (each $2 \mathrm{H}, \mathrm{d}, \mathrm{J} 11, \mathrm{OCH}_{2} \times 2$), $5.22(1 \mathrm{H}$, d, J 6, OCHO), 5.97 (1 H, br d, J 6, 5-H), 6.23 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16$ and $7.5,2-\mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,3-\mathrm{H})$ and $9.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.5$, CHO) (Found: $\mathrm{M}^{+}, 210.127 . \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{M}, 210.125$).

(2E,4E)-3-M ethyl-6-[2'-oxocyclopent-(E)-ylidene]hexa-2,4dienal 47

A solution of BuLi ($1.63 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane; $3.86 \mathrm{~cm}^{3}, 6.29$ mmol) was added to a stirred solution of diisopropylamine $\left(0.88 \mathrm{~cm}^{3}, 6.29 \mathrm{mmol}\right)$ in dry THF $\left(20 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for a further 30 min . To this LDA solution was added dropwise a solution of cyclopentanone ($480 \mathrm{mg}, 5.71$ mmol) in dry THF ($10 \mathrm{~cm}^{3}$). The mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$, after which a solution of the aldehyde $46(1.00 \mathrm{~g}$, $47.6 \mathrm{mmol})$ in dry THF ($20 \mathrm{~cm}^{3}$) was added dropwise at the same temperature and stirring was continued for a further 45 min. A fter being quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with ether followed by standard work-up to give a residue, which was purified by SCC (acetone-hexane, 1:4) to afford the adduct ($1.24 \mathrm{~g}, 89 \%$) as an oil, $v_{\text {max }} / \mathrm{cm}^{-1} 3493$ (OH), 1722 (CO) and 1635 ($\mathrm{C}=\mathrm{C}$).

Subsequently, acetic anhydride ($0.68 \mathrm{~cm}^{3}, 7.2 \mathrm{mmol}$) was added to a stirred solution of this adduct ($1.24 \mathrm{~g}, 4.2 \mathrm{mmol}$) and DMAP ($930 \mathrm{mg}, 7.62 \mathrm{mmol}$) in dry benzene ($30 \mathrm{~cm}^{3}$). The mixture was stirred at room temp. for 1.5 h , after which DBU ($0.63 \mathrm{~cm}^{3}, 4.2 \mathrm{mmol}$) was added. A fter being stirred at room temp. for 2 h , the mixture was diluted with ether and washed successively with aq. $3 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried solution provided the crude product, which without purification was dissolved in a mixture of acetone ($15 \mathrm{~cm}^{3}$) and THF ($40 \mathrm{~cm}^{3}$). To this solution were added water ($5 \mathrm{~cm}^{3}$) and a solution of p -TsOH ($0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ in THF; $10 \mathrm{~cm}^{3}, 1.0 \mathrm{mmol}$) and the mixture was stirred at room temp. for 2.5 h , before being diluted with ether. The organic layer was washed successively with saturated aq. NaHCO_{3} and brine Evaporation of the dried solution gave a residue, which was purified by SCC (acetone-hexane, 1:3) to provide the oxo trienal 47 ($578 \mathrm{mg}, 64 \%$ from 46) as a yellow solid, $v_{\text {max }} / \mathrm{cm}^{-1}$

1707 (conj. CO and conj. CHO) and 1634 and 1618 (split) ($\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 2.03\left(2 \mathrm{H}\right.$, quint, J $\left.7.5,4^{\prime}-\mathrm{H}_{2}\right), 2.34(3 \mathrm{H}, \mathrm{s}$, $3-\mathrm{M} \mathrm{e}), 2.41\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5,3^{\prime}-\mathrm{H}_{2}\right), 2.81(2 \mathrm{H}, \mathrm{td}, \mathrm{J} 7.5$ and 2.5 , $5^{\prime}-\mathrm{H}_{2}$), $6.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.5,2-\mathrm{H}), 6.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,4-\mathrm{H}), 6.82$ (1 $\mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and $11,5-\mathrm{H}), 7.00(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 11$ and $2.5,6-\mathrm{H})$ and 10.16 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.5, \mathrm{CHO}$) (Found: $\mathrm{M}^{+}, 190.099 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $M, 190.099)$.

($2 \mathrm{E}, 4 \mathrm{E}, 6 \mathrm{E} / \mathrm{Z}, 8 \mathrm{E}$)-2,7-D imethyl-10-[2'-oxocyclopent-(E)-ylidene]deca-2,4,6,8-tetraenal 48a and 48b

In the same manner as described for the preparation of the oxo pentaenals 32ab, Wittig reaction between the phosphonium salt $31^{14}(1.10 \mathrm{~g}, 2.35 \mathrm{mmol})$ and the aldehyde $47(224 \mathrm{mg}, 1.78$ $\mathrm{mmol})$ followed by acid hydrolysis and then treatment with the palladium complex catalyst gave a crude product, which was purified by SCC (acetone-hexane, 3:7) and then PHPLC [LiChrosorb Si $60(5 \mu \mathrm{~m}) 1.0 \times 30 \mathrm{~cm}$; TH F-hexane, 13:87] to provide the all-E-oxo pentaenal 48 a ($130 \mathrm{mg}, 43 \%$ from 47) and the $6 Z$-isomer 48b ($26 \mathrm{mg}, 9 \%$ from 47) as orange solids. C ompound 48a: $\lambda_{\text {max }}($ EtOH $) / \mathrm{nm} 296,401$ and 421; $v_{\text {max }} / \mathrm{cm}^{-1} 1698$ (conj. CO), 1665 (conj. CHO) and 1601 and $1557\left(\mathrm{C}=\mathrm{C}\right.$); $\delta_{\mathrm{H}}(300$ M Hz) 1.90 ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{M} \mathrm{e}$), $2.00\left(2 \mathrm{H}\right.$, quint, J 7.5, 4'- H_{2}), 2.04 ($3 \mathrm{H}, \mathrm{s}, 7-\mathrm{M} \mathrm{e}$), $2.38\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5,3^{\prime}-\mathrm{H}_{2}\right), 2.78(2 \mathrm{H}, \mathrm{td}, \mathrm{J} 7.5$ and $\left.2,5^{\prime}-\mathrm{H}_{2}\right), 6.44(1 \mathrm{H}, \mathrm{br} d, \mathrm{~J} 11.5,6-\mathrm{H}), 6.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and 11.5, 9-H), 6.71 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,8-\mathrm{H}$), 6.79 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5$ and 11.5, 4-H), 6.97 (1 H, dd-like, J 11.5 and 1, 3-H), $7.01(1 \mathrm{H}, \mathrm{dt}$, J 11.5 and $2,10-\mathrm{H}), 7.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5$ and $11.5,5-\mathrm{H})$ and 9.48 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$) (Found: $\mathrm{M}^{+}, 256.146 . \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}$ requires M , 256.146).

Compound 48b: $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 297,397$ and 416; $v_{\text {max }} / \mathrm{cm}^{-1}$ 1699 (conj. CO), 1663 (conj. CHO) and 1603 and 1571 ($\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 1.89(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{M} \mathrm{e}), 2.01\left(2 \mathrm{H}\right.$, quint, J 7.5, 4'- H_{2}), $2.06(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{M} \mathrm{e}), 2.40\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5,3^{\prime}-\mathrm{H}_{2}\right), 2.78(2 \mathrm{H}, \mathrm{td}, \mathrm{J} 7.5$ and $\left.2,5^{\prime}-\mathrm{H}_{2}\right), 6.31(1 \mathrm{H}, \mathrm{brd}, \mathrm{J} 12,6-\mathrm{H}), 6.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and $12,9-\mathrm{H}), 6.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14$ and 11.5, 4-H), $6.97(1 \mathrm{H}, \mathrm{br}$ d, J $11.5,3-\mathrm{H}), 7.06(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 12$ and $2,10-\mathrm{H}), 7.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14$ and $12,5-\mathrm{H}), 7.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,8-\mathrm{H})$ and $9.49(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$ (Found: ${ }^{+}$, 256.147)

Preparation of the analogue 12

Following the procedure described for the preparation of the analogue 8, Wittig reaction between the phosphonium salt 16 $(850 \mathrm{mg}, 1.95 \mathrm{mmol})$ and the aldehyde 48 a ($200 \mathrm{mg}, 0.78 \mathrm{mmol}$) followed by purification by SCC (ether-hexane, 2:3) afforded an isomeric mixture [$130 \mathrm{mg}, 50 \%$ from 48a; all-E (analogue 12): 10 'Z ~ 1 :1]. PHPLC separation [LiChrosorb Si $60(5 \mu \mathrm{~m})$ $1.0 \times 30 \mathrm{~cm}$; THF-hexane, 5:95] of the mixture in the dark provided the analogue $\mathbf{1 2}$ and its 10 ' Z -isomer as red solids.
Analogue 12: $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 260$ sh, 269 and 462; $\lambda_{\text {max }}{ }^{-}$ (hexane)/nm 257sh, 266, 425, 449 and $447 ; v_{\text {max }} / \mathrm{cm}^{-1} 1694$, 1604, 1571 and 1523 (conj. CO and $\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 1.82$ (3 H, br d, J 6, $15^{\prime}-\mathrm{Me}$), 1.91 ($3 \mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{Me}$), $1.97(3 \mathrm{H}, \mathrm{s}$, $4^{\prime}-\mathrm{M} \mathrm{e}$), 1.98 ($3 \mathrm{H}, \mathrm{s}, 9^{\prime}-\mathrm{M} \mathrm{e}$), 1.98 (2 H , quint, J $7.5,4-\mathrm{H}_{2}$), $2.37\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5,5-\mathrm{H}_{2}\right), 2.75\left(2 \mathrm{H}, \mathrm{td}, \mathrm{J} 7.5\right.$ and $\left.2,3-\mathrm{H}_{2}\right)$, 5.76 ($1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 15.5$ and $6,15^{\prime}-\mathrm{H}$), 6.08 ($1 \mathrm{H}, \mathrm{br}$ d, J 11.5 , $12^{\prime}-\mathrm{H}$), 6.16 (1 H, dd-like, J 15.5 and $1.5,14^{\prime}-\mathrm{H}$), $6.25(1 \mathrm{H}$, br d, J $11.5,8^{\prime}-\mathrm{H}$), $6.33\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,10^{\prime}-\mathrm{H}\right.$), $6.34(1 \mathrm{H}, \mathrm{dd}$ J 15 and $12,2^{\prime}-\mathrm{H}$), $6.40\left(1 \mathrm{H}\right.$, br d, J $\left.11.5,5^{\prime}-\mathrm{H}\right), 6.61(1 \mathrm{H}$ dd, J 14.5 and $11.5,6^{\prime}-\mathrm{H}$), 6.65 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and $11.5,11^{\prime}$ H), $6.70\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,3^{\prime}-\mathrm{H}\right.$), 6.73 (1 H , dd, J 14.5 and 11.5 , $7^{\prime}-\mathrm{H}$) and 7.04 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 12$ and $2,1^{\prime}-\mathrm{H}$) (Found: M^{+}, 334.231. $\mathrm{C}_{24} \mathrm{H}_{30} 0$ requires $\mathrm{M}, 334.230$).

10'Z-I somer: $\lambda_{\text {max }}($ EtOH $) / \mathrm{nm}$ 262sh, 271, 337 and 457; $\lambda_{\text {max }}-$ (hexane)/nm 257sh, 267, 318, 332, 426, 448 and $477 ; v_{\text {max }} / \mathrm{cm}^{-1}$ 1695, 1604, 1560 and 1523 (conj. CO and $\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz})$ 1.83 (3 H, br d, J 6.5, $15^{\prime}-\mathrm{M} \mathrm{e}$), 1.88 ($3 \mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{Me}$), 1.97 (3 H , s, 4'-M e), $1.99\left(2 \mathrm{H}\right.$, quint, J $\left.7.5,4-\mathrm{H}_{2}\right), 2.10\left(3 \mathrm{H}, \mathrm{s}, 9^{\prime}-\mathrm{M} \mathrm{e}\right.$), $2.38\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5,5-\mathrm{H}_{2}\right), 2.76\left(2 \mathrm{H}, \mathrm{td}, \mathrm{J} 7.5\right.$ and $\left.2,3-\mathrm{H}_{2}\right), 5.80(1$ H, dq, J 15 and $6.5,15^{\prime}-\mathrm{H}$), 5.95 ($1 \mathrm{H}, \mathrm{br}$ d, J 11.5, $10^{\prime}-\mathrm{H}$), 6.19 (1 H , dd-like, J 15 and $1,14^{\prime}-\mathrm{H}$), $6.30\left(1 \mathrm{H}\right.$, br d, J $11.5,8^{\prime}-\mathrm{H}$),
$6.33\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 11.5,11^{\prime}-\mathrm{H}\right), 6.34\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5\right.$ and $12,2^{\prime}-\mathrm{H}$), 6.41 (1 H, br d, J 11.5, $5^{\prime}-\mathrm{H}$), 6.58 (1 H, br d, J 11.5, $12^{\prime}-\mathrm{H}$), $6.61\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5\right.$ and $\left.11.5,6^{\prime}-\mathrm{H}\right), 6.71\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.5,3^{\prime}-\mathrm{H}\right)$, $6.72\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5\right.$ and $\left.11.5,7^{\prime}-\mathrm{H}\right)$ and $7.04(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 12$ and 2, 1'-H) (Found: $\mathrm{M}^{+}, 334.230$).

($2 \mathrm{E}, 4 \mathrm{E}, 6 \mathrm{E}, 8 \mathrm{E}, 10 \mathrm{E}, 12 \mathrm{E}, 14 \mathrm{E}$)-2,6,11,15-Tetramethyl-16-0x0-heptadeca-2,4,6,8,10,12,14-heptaenal 49

In the same manner as described for the preparation of the oxo pentaenals 32ab, Wittig reaction between the phosphonium salt $31{ }^{14}(1.03 \mathrm{~g}, 2.21 \mathrm{mmol})$ and the aldehyde 24a ($216 \mathrm{mg}, 0.89$ mmol) followed by acid hydrolysis and successive treatment with the palladium complex catalyst gave a crude product, which was purified by SCC (acetone-hexane, $2: 8$) and then PH PLC [LiChrosorb CN $60(7 \mu \mathrm{~m}) 2.5 \times 30 \mathrm{~cm}$; THF-hexane, 13:87] to provide the all-E-oxo heptaenal 49 ($159 \mathrm{mg}, 58 \%$ from 24a) as an orange solid, $\lambda_{\max }(E t O H) / \mathrm{nm} 264,420$ sh, 442 and 467; $v_{\text {max }} / \mathrm{cm}^{-1}$ 1721, 1662, 1611 and 1576 (conj. CO, conj. CH O and $\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 1.91(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{M} \mathrm{e}$), 1.95 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1$, $15-\mathrm{M} \mathrm{e}$), 2.02 and 2.03 (each $3 \mathrm{H}, \mathrm{s}, 6$ - and $11-\mathrm{Me}$), 2.37 ($3 \mathrm{H}, \mathrm{s}$, M eCO), $6.40(1 \mathrm{H}, \mathrm{br}$ d, J $10.5,10-\mathrm{H}), 6.46(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 10$, 7-H), $6.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and $8.5,13-\mathrm{H}), 6.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15$, 12-H), 6.73 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5$ and 9, 4-H), 6.72-6.80 (3 H, m, 5-, 8- and 9-H), 6.95 (1 H , br d, J 9, 3-H), 7.14 (1 H, br d, J 8.5 , $14-\mathrm{H}$) and 9.47 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$) (Found: M^{+}, 310.195. $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $M, 310.193)$.

Preparation of the analogue 13

A ccording to the procedure described for the preparation of the analogue 8, Wittig reaction between the phosphonium salt $16(350 \mathrm{mg}, 0.80 \mathrm{mmol})$ and the aldehyde $49(82 \mathrm{mg}, 0.26 \mathrm{mmol})$ gave a residue, which was purified by SCC (acetone-hexane, $1: 3$) and then PLC (acetone-hexane, 1:3) to afford an isomeric mixture ($92 \mathrm{mg}, 90 \%$). PH PLC separation [LiChrosorb Si 60 $(5 \mu \mathrm{~m}) 1.0 \times 30 \mathrm{~cm}$; THF-hexane, 7:93] of the mixture in the dark provided the analogue 10 as a red solid, $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ 292, 446sh, 471 and 494sh; $\lambda_{\max }($ hexane $/ \mathrm{nm} 277 \mathrm{sh}, 289,340$, 357, 443, 470 and 502; $v_{\text {max }} / \mathrm{cm}^{-1} 1647,1607,1584,1558$ and 1515 (conj. CO and C=C); $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 1.83$ ($3 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 5.5$, $22-\mathrm{M} \mathrm{e}$), 1.91 ($3 \mathrm{H}, \mathrm{s}, 20-\mathrm{Me}$), 1.94 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,3-\mathrm{Me}$), 1.99 (3 H) and $2.00(6 \mathrm{H})$ (each s, $7-12$ - and $16-\mathrm{Me}$ e, $2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{eCO})$, 5.75 ($1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 15.5$ and $7,22-\mathrm{H}), 6.08(1 \mathrm{H}, \mathrm{brd}, \mathrm{J} 11,19-\mathrm{H})$, 6.16 (1 H , dd-like, J 15.5 and $1.5,21-\mathrm{H}$), 6.23 (1 H, br d, J 11.5 , $15-\mathrm{H}), 6.28$ ($1 \mathrm{H}, \mathrm{brd}, \mathrm{J} 11.5,11-\mathrm{H}$), 6.34 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,17-\mathrm{H}$), $6.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,13-\mathrm{H}), 6.40(1 \mathrm{H}, \mathrm{br}$ d, J $11.5,8-\mathrm{H}), 6.59(1 \mathrm{H}$, dd, J 15 and $11,5-\mathrm{H}$), 6.62 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and $11,18-\mathrm{H}$), 6.64 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14$ and 11.5, 9-H), $6.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,6-\mathrm{H}$), 6.69 (1 H , dd, J 15 and $11.5,14-\mathrm{H}$), 6.74 ($1 \mathrm{H}, \mathrm{dd}$, J 14 and $11.5,10-\mathrm{H}$) and $7.14\left(1 \mathrm{H}\right.$, dd-like, J 11 and 1, 4-H) (Found: $\mathrm{M}^{+}, 388.278$. $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}$ requires $\mathrm{M}, 388.276$).

Acknowledgements

We appreciate Kuraray Co., Ltd. Japan, Dr U. Hengartner, H offmann-La Roche Ltd. in Basel and Dr J. Paust, BASF A ktiegesellschaft in Ludwigshafen for the chemical support. We thank M isses Y. K onishi, K. Ono, H. Yao, T. Inoue and M . Yokota for technical assistance. This work was partly supported by K obe Pharmaceutical U niversity C ollaboration F und.

R eferences

1 Part 3, Y. Yamano, C. Tode and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1995, 1895.
2 D. Sieferman-H arms, Biochim. Biophys. A cta, 1985, 811, 325.
3 M . M imuro and T. K atoh, P ure A ppl. C hem., 1991, 63, 123.
4 T. K atoh, U. N agashima and M. M imuro, Photosynth. Res., 1991, 27, 221.
5 M . M imuro, U. N agashima, S. Takaichi, Y. N ishimura, I. Yamazaki and T. K atoh, B iochim. Biophys. A cta, 1992, 1098, 271.
6 M . M imuro, U. N agashima, S. N agaoka, Y. N ishimura, S. Takaichi, T. K atoh and I. Y amazaki, C hem. P hys. L ett., 1992, 191, 219.

7 M. M imuro, Y. Nishimura, S. Takaichi, Y. Yamano, M. Ito S. N agaoka, I. Y amazaki, T. K atoh and U. N agashima, C hem. P hys Lett., 1993, 213, 576.
8 P. S. M anchand, R. Rüegg, U. Schwieter, P. T. Siddons and B. C. L. Weedon, J. C hem. Soc., 1965, 2019.

9 K. Sisido, K. K ondô, H. Nozaki, M. Tuda and Y. U dô, J. Am. Chem. Soc., 1960, 82, 2286.
10 J. A. Haugan, G. Englert, E. Glinz and S. Liaaen-Jensen, Acta C hem. Scand., 1992, 46, 389.
11 T. R . R icketts, P hotochemistry, 1971, 10, 155.
12 S. Takaichi, K. F urihata and K . H arashima, A rch. M icrobiol., 1991, 155, 473.
13 W. J. Scott, M. P. Peña, K. Swärd, S. J. Stessel and J. K. Stille, J. O rg. C hem., 1985, 50, 2302.

14 J. Paust, P ure A ppl. Chem., 1991, 63, 45
15 A . Fischli, H. M ayer, W. Simon and H.-J. Stoller, H elv. Chim. Acta, 1976, 59, 397.
16 A. A. Ponaras and M. Y. M eah, Tetrahedron L ett., 1986, 27, 4953.
17 M . M imuro, S. A kimoto, S. Takaichi and I. Yamazaki, J. A m. C hem. Soc., 1997, 119, 1452.
18 T. N oguchi, H. Hayashi, M. Tasumi and G. H. A tkinson, J. Phys. C hem., 1991, 95, 3167.

Paper 7/02815F
Received 24th A pril 1997
A ccepted 23rd M ay 1997

[^0]: \dagger One of the eight double bonds in peridinin is cross-conjugated with

